NM500 User's Manual

NeuroMem chip, 576 neurons Version 1.6.3 Revised 04/18/2019

NM500 is a product manufactured exclusively by nepes (www.nepes.kr).

NM500 is subject to a license from General Vision for the NeuroMem® technology.

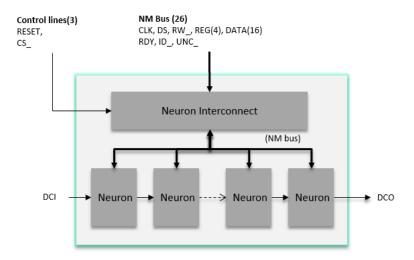
This manual is published and copyrighted by General Vision Inc. All rights reserved.

For information about the NeuroMem® digital neuromorphic technology, refer to the General Vision web site at www.general-vision.com and in particular the NeuroMem® Dechnology Reference Guide.

CONTENTS

1	Overv	riew	4
	1.1	Architecture	4
	1.2	The basic neuron entity	
2	The c	ontrol registers	6
	2.1	Neuron registers in detail	7
	2.2	Registers Access Latency	.11
	2.3	Typical latencies per operation	
3	Neuro	oMem bus and control lines	
	3.1	Clocks, power-up and reset	
	3.1.1	==,0	
	3.1.2	G_CLK, system clock	
	3.1.3	CS_, power saving control line	
	3.1.4	DCI	
	3.1.5	DCO	.14
	3.2	NeuroMem bus	
	3.2.1	DS	
	3.2.2	RW	
	3.2.3	REG[3:0]	
	3.2.4	DATA[15:0]	
	3.2.5	RDY	
	3.2.6	ID	
	3.2.7	UNC	
4		al Timings Constraints	
	4.1	Timings	
	4.2	Learn a vector	
	4.3	Recognize a vector	
5		connecting chips	
	5.1	Counting the neurons in a chain of unknown length	
	5.2	Verifying the proper interconnectivity of the entire chain	
	5.3	If a chain has more than 65535 neurons	
_	5.4	Single or multiple chains of neurons	
6		ıt	
7		anical specifications	
8		rical Specifications	
	8.1	Recommended Operating Conditions	
_	8.2	DC Electrical Charateristics	
9		r Consumption	
	9.1	Peak Power	
	9.2	Intrinsic Power	
4.0	9.3	Power saving tips	
1(•	Hardware and the same at the s	
	10.1	Hardware questions	
		Functional questions	
	10.3	What is the difference between CM1K and NM500	.29

1 OVERVIEW

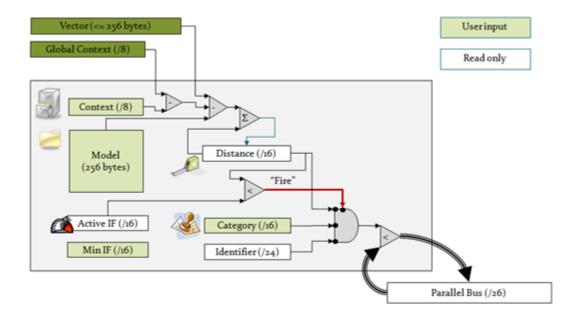

The NM500 chip is a fully parallel silicon neural network: it is a chain of identical elements (i.e. neurons) addressed in parallel and which have their own "genetic" material to learn and recall patterns without running a single line of code and without reporting to any supervising unit. In addition, the neurons fully collaborate with each other through a bi-directional and parallel neuron bus which is the key to accuracy, adaptivity and speed performance. Indeed, each neuron incorporates information from all the other neurons into its own learning logic and into its response logic.

The neurons can learn and recognize input vectors autonomously and in parallel. If several neurons recognize a pattern (i.e. "fire"), their responses can be retrieved automatically in increasing order of distance (equivalent to a decreasing order of confidence). The information which can be read from a firing neuron includes its distance, category, and neuron identifier. If the response of several or all firing neurons is polled, this data can be consolidated to make a more sophisticated decision weighing the cost of uncertainty or else.

1.1 ARCHITECTURE

The NM500 chip has a unique homogeneous architecture:

- Chain of identical neurons, daisy-chained Intra-Chip and Inter-Chip
- Neuron Interconnect module (switches, no controller or supervisor) which synchronize communication between the neurons Intra-Chip and Inter-Chip.



- All neurons have the same behavior and execute the instructions in parallel independent from the cluster or even chip they belong to.
- Selection of one out of two classifiers: K-Nearest Neighbor (KNN) or Radial Basis Function (RBF) and more precisely a Restricted Coulomb Energy (RCE) neural network
- Recognition time is independent of the number of neurons in use
- Automatic model generator built into the neurons
- Save and Restore of the contents of the neurons
- Simple Register Transfer Level instruction set through of 15 registers

1.2 THE BASIC NEURON ENTITY

The neuron cell is composed of a memory, a set of 6 registers and some logic gates. For details, please refer to chapter 3 of the <u>NeuroMem technology Reference Guide</u>.

- Context register: input describing the type of pattern stored in the neuron
- Memory holds a model or prototype
- Category register: input written during a learning operation (whether supervised or unsupervised)
- Distance: output given the distance between an input pattern and the pattern stored in the Memory of the neuron
- AIF: Active Influence Field auto-adjusted by the neuron
- MINIF: Minimum influence field of the neuron
- Identifier: Position of the neuron in the chain of neurons available

A neuron is said committed when it stores a pattern to its memory along with a category with a value different from 0. Such action takes place when a learning operation is executed and none of the presently committed neurons recognize the pattern with a category equal to the category to learn.

2 THE CONTROL REGISTERS

The entire neural network whether composed of one or multiple chips can be used under 2 different modes:

Normal mode

The neurons can learn and recognize patterns. In recognition, the neurons can behave as a K-Nearest Neighbor (KNN) or Radial Basis Function (RBF) and more precisely a Restricted Coulomb Energy (RCE) neural network.

Save-and-Restore (SR) mode

The neurons become dummy memories which can be read or written. Their automatic model generator and search-and-sort logic are disabled. The contents of the committed neurons is a representation of the knowledge they have built autonomously by learning examples. The SR mode allows to view, save and restore this knowledge.

NeuroMem Registers and Read/Write access under the Normal and SR mode.

Abbreviation	Description	Addr 8-bit	Normal mode	SR mode	16-bit default
NSR	Network Status Register	0x0D	RW	W	0x0000
GCR	Global Control Register	0x0B	RW		0x0001
MINIF	Minimum Influence Field	0x06	RW	RW	0x0002
MAXIF	Maximum Influence Field	0x07	RW		0x4000
NCR	Neuron Context Register	0x00		RW	0x0001
COMP	Component	0x01	W	RW	0x0000
LCOMP	Last Component	0x02	W		0x0000
INDEXCOMP	Component index	0x03	W	W	0x0000
DIST	Distance register	0x03	R	R	0xFFFF
CAT	Category register	0x04	RW	RW	0xFFFF
AIF	Active Influence Field	0x05		RW	0x4000
NID	Neuron Identifier	0x0A	R	R	0x0000
POWERSAVE	PowerSave	0x0E	W		n/a
FORGET	Forget	0x0F	W		n/a
NCOUNT	Count of committed neurons	0x0F	R	R	0x0000
RESETCHAIN	Points to the first neuron	0x0C		W	n/a
TESTCOMP	Test Component	0x08		W	0x0000
TESTCAT	Test Category	0x09		W	0x0000

The typical programming sequences to use the neurons are summarized below and described in detail in the NeuroMem Technology Reference Guide.

https://www.general-vision.com/documentation/TM NeuroMem Technology Reference Guide.pdf

- Broadcast a vector to all the neurons (whether to learn or recognize it)
- Recognize the last broadcasted vector
- Learn the last broadcasted vector
- Save the content of all the neurons
- Read the content of a specific neuron
- Load the content of the neurons

2.1 NEURON REGISTERS IN DETAIL

Abbreviation	Register	Normal mode	SR mode
NSR	Network Status Register Bit[1:0], reserved Bit[2], UNC (Uncertain) Bit[3], ID (Identified) Bit[4], SR mode Bit[5], KNN classifier	The ID and UNC bits are updated internally after each Write Last Comp command. ID is high if all firing neurons report the same category. UNC is high if several neurons fire but disagree with the category. Note that this is always the case if the mode is KNN and 2 committed neurons have different categories. KNN is a recognition mode and should not be active while learning. Indeed, any pattern would be recognized whatever its distance from a neuron and the learning will only create a single neuron per new category.	Writing Bit 4 to 1 switches the chain of neuron to SR mode and points directly to the RTL neuron.
GCR	Norm + Context and also partial identifier of the RTL neuron Bit [6:0]= Context Bit[7]= Lsup Norm Bit[23:16]= Identifier[23:16]	Global Context assigned to all neurons not already committed If the Norm is not set to LSUP, the default is the L1 Norn or Manhattan distance. Accessing the 3 rd upper byte of the RTL neuron is needed if the chain of neurons is larger than 65535 neurons. Read as 0xFFFF if the network is full	N/A
MINIF	Minimum Influence Field	Global MINIF assigned to the non- committed neurons Read as 0xFFFF if the network is full	MINIF of the pointed neuron, assigned at the time it was committed
MAXIF	Maximum Influence Field	Global MAXIF assigned to the non- committed neurons Read as 0xFFFF if the network is full	N/A

Abbreviation	Register	Normal mode	SR mode
NCR	Neuron Context Register	Bit[15:8]=0x00 Bit[7:0]= Identifier [23:16] of the RTL neuron	Context of the pointed neuron Bit[15:8] = Identifier [23:16] Bit[7]= LSUP Norm Bit[6:0]= Context [0, 127]
COMP	Component Bit[15:8] = unused Bit[7:0]= byte component	Each Write COMP stores the component at the current INDEXCOMP value and updates the DIST register of the committed neurons with NCR=GCR and also of the RTL neuron. INDEXCOMP is automatically incremented.	After each Read or Write, moves to the next INDEXCOMP of the pointed neuron
LCOMP	Last Component Bit[15:8] = unused Bit[7:0]= byte component	Write LCOMP stores the component at the current INDEXCOMP value and updates the DIST register of the committed neurons with NCR=GCR and also of the RTL neuron. INDEXCOMP is set to 0. The ID_ and UNC_ lines are updated to report the recognition status. If ID_ line is low, the "identified category" is available on the DATA bus.	N/A
INDEXCOMP	Component index Common index pointing to the neurons' memory between [0, 255].	Write INDEXCOMP moves to a specific index value, but does not reset the DIST register. This value is incremented automatically after each Read COMP or Write COMP. It is reset after a Write LCOMP.	

Abbreviation	Register	Normal mode	SR mode
DIST	between [0, 65535] DIST=0 means that the vector matches exactly the model of the firing neuron. The higher the distance, the farther the vector from the model.	This register is updated by the neuron during the broadcast of components (Write COMP and Write LCOMP) Read DIST returns the distance of the top firing neuron. This "winner" neuron pulls out of the race, so the next Read Dist will ne answered by the next top firing neuron, etc. DIST=0xFFFF means that there are no more firing neurons. Must be read after Write LCOMP and before Read CAT	N/A
CAT	Category register Bit 15= Degenerated flag (read-only) Bits [14:0]= Category value between 0 and 32766 (0x7FFE) CAT greater than 32768 means that the responding neuron is degenerated. The value must be masked with 0x7FFF to report the original category of the neuron.	Write CAT of 0 does not commit a new neuron, but may force existing committed neurons to reduce their influence fields. Read CAT returns the category of the top firing neuron CAT=0xFFFF means that there are no more firing neurons Must be read after the DIST register except if the ID_ line is low and the NID register does not need to be read after the CAT register.	Category of the pointed neuron Read or Write CAT automatically moves to the next neuron index in the chain.
AIF	Active Influence Field	This register is updated automatically by all the firing neurons during learning operations (i.e. Write CAT)	Influence field of the pointed neuron
NID	Neuron Identifier or index of the neuron in the chain, starting with the value 1 Bit[15:0]= 2 lower bytes of a 3-bytes neuron identifier. The upper byte is stored in the NCR register. Its access is only necessary when the chain of neurons is larger than 65535.	This register is assigned automatically when the RTL neuron gets committed after a Write CAT. Read NID returns the identifier of the firing neuron with the least distance and least category. It must be read after a Read CAT. (1)	Identifier of the pointed neuron. This register is assigned automatically when the pointed neuron gets assigned a category different from 0 with a Write CAT.

Abbreviation	Register	Normal mode	SR mode
POWERSAVE	PowerSave mode		
	Writing this register resets the DATA lines to a tri-state		
	mode and ensures that they		
	do not draw current from		
	the pull-up resistors.		
FORGET	Uncommit all neurons by	Note that the neuron's memory is	N/A
	clearing their category	not cleared, but its index is reset	
	register.	to point at the first component.	
		Also reset the MINIF, MAXIF and	
		GCR to their default values.	
NCOUNT	Count of committed	NCOUNT=0xFFFF means that all	Index of the neuron
	neurons	neurons of the chain are	pointed in the chain.
		committed. If the chain of neurons	
	Bit[15:0]= 2 lower bytes of	is greater than 65535 neurons this	Write RESETCHAIN points
	the count	can also means that 65535	to the first neuron. If it is
		neurons are indeed committed.	committed, NCOUNT will
			be equal 1, otherwise 0.
		Reading the upper byte of the NCR register can extend the count to a	
		3 bytes value.	
RESET		N/A	Points to the first neuron
CHAIN		,	of the chain.
TESTCOMP(2)		For all committed neurons, write	
		their component pointed by the	
		current INDEXCOMP with the	
		same input value.	
		Refer to paragraph below for use	
TESTCAT(2)		model.	Write the same category
ILSICAT(2)			to all the neurons. Useful
			for test routines to commit
			all neurons in one clock
			cycle.
			Refer to paragraph below
			for use model.

- (1) If the content of the neurons has been built using their model generator, there should be no occurrences of firing neurons with the same distance and same category. As a result, reading the NID returns the identifier of the sole firing neuron. If, on the contrary, the content of the neurons has been loaded in Save-and-Restore and is such that multiple neurons can fire with the same distance and same category, NID will return an "irrelevant" value which is the AND of all their identifier.
- (2) Usage of the TEST registers: clear the neurons' memory

- Write NSR 0x10 Set the SR mode

- Write TESTCAT 1 Commit all neurons with a dummy category value of 1

- Write NSR 0x00 Cancel the SR mode, back to normal mode

- For i=0 to 256

- Write TESTCOMP=0
- o Write INDEXCOMP i
- Write NSR 0x10
- Write TESTCAT 0

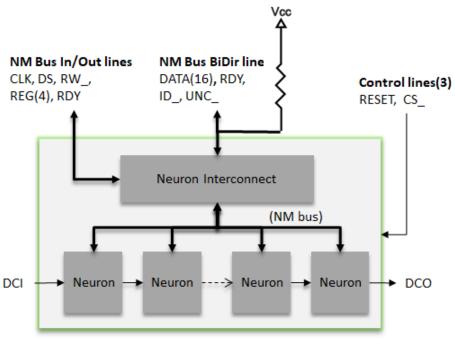
- Write NSR 0x00

Set the SR mode Uncommit all the neurons Cancel the SR mode, back to normal mode

2.2 REGISTERS ACCESS LATENCY

Accessing most registers takes a single clock cycle. In Learn and Recognition mode, reading and writing the LCOMP, DIST and CAT registers can take between 3 and 19 clock cycles depending on the content of the neuron at the time of the execution. This means that two neurons can execute a same instruction in different number of clock cycles depending on its status and internal registers' values. For example, a neuron which does not recognize an input pattern will execute the RDIST instruction in 1 cycle, when a neuron which recognizes the pattern (i.e. fires) will participate to the Search and Sort race for up to 16 clock cycles. The Ready line of the chip indicates when all the neurons have finished the execution of an instruction and can receive a new one.

Write LCOMP (0x02), Read DIST (0x03), Read and Write CAT (0x04) are "snooping" commands meaning they are making open collector bus mixing. The release of the DATA lines as well as the ID_ and UNC_ lines after the fall of the DS signal is critical so they can snoop properly.


The following table reports the number of clock cycles (cc) necessary to read and write the registers of the chip. The cycles are counted from the first rising edge of the system clock upon the receipt of the DS signal, to the rising edge of the READY signal upon execution of the command.

Addr	Register	Description	Learn and Recognition mode		Save and mo	
			Write cycles	Read	Write	Read
			Write eyeles	cycles	cycles	cycles
0x00	NCR	Neuron Context Register		,	1	1
0x01	COMP	Component	1		1	1
0x02	LCOMP	Last Component	1 if no neurons			
			3 otherwise			
0x03	INDEXCOMP	Component Index	1		1	
0x03	DIST	Distance		18		1
0x04	CAT	Category	1 if ID, 19	3 if ID, 19	1	1
			otherwise	otherwise		
0x05	AIF	Active Influence Field			1	1
0x06	MINIF	Minimum Influence Field	1	1		1
0x07	MAXIF	Maximum Influence Field	1	1		
0x08	TESTCOMP	Test Component			1	
0x09	TESTCAT	Test Category			1	
0x0A	NID	Neuron Identifier		1		1
0x0B	GCR	Global Context Register	1	1		
0x0C	RESETCHAIN				1	
0x0D	NSR	Network Status Register	1	1		
0x0F	FORGET	Clear the neurons	1			
0x0F	NCOUNT	Committed neurons	1	1		

2.3 TYPICAL LATENCIES PER OPERATION

Operation	Clock cycles	@35 Mhz (single chip)	@18 Mhz (multi-chips)
		L=256, N=576, K=3	L=256, N=576, K=3
Broadcast a vector of Length L	L+3	7.3 μs	14.3 μs
Learn a vector of length L	L+3 + 18	7.9 μs	15.4 μs
Status of a vector of length L	L+3+1	7.4 μs	14.4 μs
Best match of a vector of length L	L+3+37	8.3 μs	16.2 μs
Get the K top match of a vector of length L	L+3+ (K*37)	9.1 μs	17.8 μs
Save N neurons	4+ (N*260)	4.27 ms	8.3 ms
Restore N neurons	4+ (N*260)	4.27 ms	8.3 ms

This chapter describes the NeuroMem buses and control lines:

	Symbol	Туре	Description	
Configuration lines	VCC		Core power supply (1.2v)	
	VCCIO		IO power supply line (3.3 v)	
	GND		Ground line	
	DCI	Input	Daisy Chain In	
	DCO	Output	Daisy Chain Out	
Clock and Reset	G_CLK	Input	System clock	
	G_RESET_	Input	Hardware reset	
	CS_	Input	Enable chip activity	
NeuroMem bus	DS	Input	Data strobe line	
	R/W_	Input	Read/Write	
	REG[0:3]	Input	Register	
	DATA[0-15]	Bidir	Data	
Neuron output lines	ID_	Bidir	Identified_low line	
	UNC_	Bidir	Uncertain_low line	
	RDY	Output	Ready line	

3.1 CLOCKS, POWER-UP AND RESET

3.1.1 G RESET, GLOBAL RESET

The chip is reset at power-up by pulling down the G_RESET_I pin for a minimum of 5 clock cycles. An internal reset signal is then sustained for 255 clock cycles to filter any bouncing of the G_RESET_I external pulse. It is propagated internally to the neurons so all registers are set to their default values. In a multi-chip configuration, the same G_RESET_ must be connected to all chips.

3.1.2 G_CLK, SYSTEM CLOCK

The chip operates at a typical system clock of 35 MHz. If multiple chips are connected in parallel the typical system clock is 18 Mhz.

3.1.3 CS_, POWER SAVING CONTROL LINE

The CS_ line controls the propagation of the system clock G_CLK to the neurons. It is pulled low by default letting the clock run continuously.

Pulling up the the CS_ line when the chip is unused reduces considerably its power consumption (from 500 mW to 25 mW).

The timings to pull CS_ down and let the system clock pass through must be accurate:

- It must be pulled down on a negative edge of the clock when the external data strobe (DS) is high.
- It must be released on the negative edge of the clock following the rise of the RDY signal at the earliest.

3.1.4 DCI

Until the DCI line of a chip is high, its neurons are idle. As soon as the DCI line rises, the neurons of the chip become active, meaning ready to learn and recognize.

In a configuration with multiple chips, the Daisy-Chain-In (DCI) line of the first chip must be high. For the subsequent chips, the connection between their DCO and DCI lines allows to physically arrange them in a chain. The DCI line of a chip must be connected to the DCO of the previous chip in the chain. Its status is then controlled by the neurons of the previous chip.

3.1.5 DCO

The Daisy-Chain-Out (DCO) line of a chip must be connected to the DCI of the next chip in the chain, if applicable. It is low by default and will rise when the last neuron of the chip gets committed. If this line is connected to the DCI of another chip, the later will awake its neurons to become Ready-To-Learn.

3.2 NEUROMEM BUS

The neurons receive instructions simultaneously through a proprietary NeuroMem bus composed of the 26 lines as described below. The execution of these instructions can take different number of clock cycles per neuron depending on their status and content (committed and firing, committed and not firing, ready-to-learn or idle) and their interactions.

The external controller sending Read/Write commands to a chain of chips must be careful to release the bidirectional lines as soon as the Ready signal falls. Failure to do so will prevent the proper execution of commands interconnecting all the neurons together through the bi-directional lines of DATA, ID_, and UNC_.

DS	Data strobe line
RW_	Read/Write line (default is Read=1)
REG	4 bit register
DATA	16-bit data
RDY	Ready control line mixing the RDY output signal of all the neurons in the chain and indicating that the neurons are all ready to execute a new command
ID_	Control line mixing the ID_ output signal of all the neurons in the chain and indicating that neurons have identified the last vector and that these neurons are all in agreement for its classification.
UNC_	Control line mixing the UNC_ output signal of all the neurons in the chain and indicating that neurons have identified the last vector but disagree with its classification. This line is an in/out line because used as an input during the execution of certain Write register.

3.2.1 DS

The data strobe line, DS, must be asserted and de-asserted at the negative edge of G_CLK. It must be asserted only when the RDY line is high.

3.2.2 RW

The Read/Write line, RW_, must be low to write and high to read. It is low by default. This signal is sampled on the positive edge of G_CLK when DS is high. In the case of a Write command, it must be pulled low only for the duration of the DS high and then immediately released to allow the interconnectivity of the neurons during a Write Last Component or a Write Category.

3.2.3 REG[3:0]

The four Register lines, REG, represent the 4-bit address of the register to read or write. They are sampled on the positive edge of G_CLK when DS is high and must be not be released before the rise of the RDY line.

3.2.4 DATA[15:0]

The 16 DATA lines are connected to open collectors and can have three different states:

- During a write operation (CM_RW low and DS high), DATA is the 16-bit value to write to the selected register. It is sampled by the neurons at the positive edge of G_CLK when DS is high and RW is low.
- At the end of a read operation (RW high and RDY rising), DATA is the 16-bit value of the selected register. It can be read on or after the rising edge of CM_RDY after the fall of DS. The default output value is
- During the execution of the commands which last more than one clock cycles, the DATA lines must be
 released to allow the mixing and snooping of the responses of all the neurons connected in parallel in a
 same chain. These operations are the Write LCOMP, Write CAT, Read DIST and Read CAT.

3.2.5 RDY

The Ready line, RDY, is pulled down by the neurons during the execution of a command and released upon its termination. It is updated at the positive edge of the system clock G_CLK whether the command is recognized by the neurons.

3.2.6 ID_

The Identified line, ID_, is pulled down when all the neurons recognizing the last input vector are all in agreement and return the same category. This line is updated each time the last component of a vector is broadcasted to the neurons either through a Write LCOMP command. The actual update occurs at the 3rd negative edge of the clock during the execution of the Write LCOMP. The ID_ line is released at the next Write COMP.

The ID_ line is also continuously latched in bit [3] of the NSR register of the chip at the positive edge of the clock.

3.2.7 UNC_

The Uncertain line, UNC_, line is bidirectional and shall not be driven. It is an output during a recognition operation and an input during a learning operation.

UNC_ is pulled down when the neurons recognizing the last input vector have different categories. This update occurs each time a Write LCOMP is executed. The actual update occurs at the 3rd negative edge of the clock during the execution of the Write LCOMP. The UNC_ line is released at the next Write COMP. Note that UNC_ is always pulled down if the mode is KNN and 2 committed neurons have different categories.

The UNC_line is also continuously latched in bit [2] of the NSR register of the chip. at the positive edge of the clock.

During a Write CAT, this line is asserted by the neurons if the last input vector is recognized as a novelty and must be stored into a new neuron.

4 TYPICAL TIMINGS CONSTRAINTS

The DS, RW_, REG and DATA signals are updated at the negative edge of the system clock (G_CLK) so that they are stable when the neurons read them at the next positive edge of G_CLK. The RDY signal is then immediately pulled down by the neurons and released at the first positive edge of G_CLK following the completion of the command. The duration during which the RDY signal is low represents the execution time of the command.

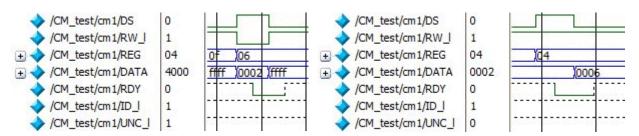
In the case of a Read command, the output DATA is ready to be read when RDY rises.

4.1 TIMINGS

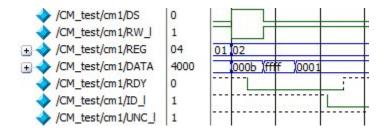
All the neurons execute the commands simultaneously. Depending on their status (Idle, Ready-to-Learn or Committed) and on the register to access, the Read and Write commands can take between 1 and 19 clock cycles.

The neurons sample signals on the positive edge of the system clock G_CLK. Their setup time must be at least 5 nanoseconds before the positive edge of G-Clock. The hold time must be at least 5 nanoseconds after the positive edge of the clock.

The neurons pull down their RDY line when the DS rises and hold it down for the duration of the command. Upon completion, the RDY line is pulled back up on the positive edge of the system clock.

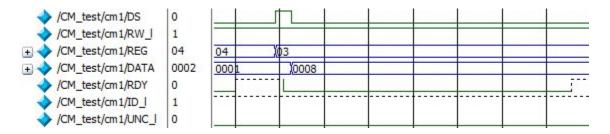

The CS_ signal must be pulled down at the latest when the DS signal rises and it can be pulled back up at the earliest when the RDY line rises back up.

A Write command (DS, RW_=0, REG, DATA) must be stable on the positive edge of the system clock and released before the next positive edge of the system clock. The DATA lines must be released before the next positive edge of the clock to ensure that the data bus becomes bi-directional for proper execution of the commands requiring snooping of the bus.


A Read command (DS, RW_=1, REG) must be stable on the positive edge of the system clock and released before the next positive edge of the system clock. DATA is stable when the RDY control line is pulled high.

Write in one cycle: REG MINIF (0x06)

Read in one clock cycle: REG CAT (0x04) in SR mode



Write taking two cycles: REG LCOMP (0x02)

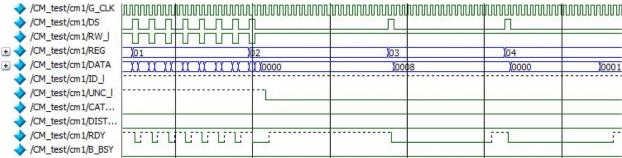
Remark: When the DS signal is asserted the DATA bus must be set the value to write (i.e. 0x000b). It is then switched to a tri-state mode (i.e. 0xFFFF) during a search and sort between the firing neurons so they can determine if the input vector is identified (ID I), uncertain (UNC I) or unknown.

Read taking sixteen cycles: REG DIST (0x03)

4.2 LEARN A VECTOR

In the example below, a vector of 8 components is learned. The resolution of the diagram does not allow for the display of the DATA values, but this is not important for understanding the timing constraints of the chip.

The sequence of instructions consists of 7 Write COMP, 1 Write LCOMP, and 1 Write CAT.


When REG is equal to 01, each DS pulse triggers a Write COMP lasting one cycle of G_CLK. The RDY signal has the same duration as the DS only shifted by one half clock cycle.

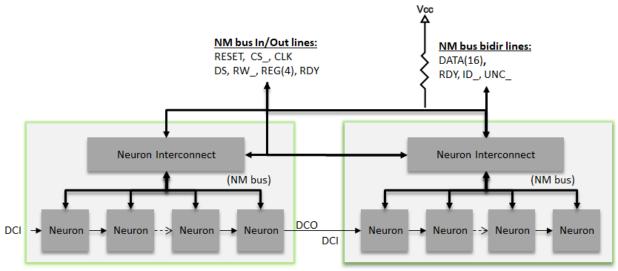
When REG is equal to 02, the DS pulse triggers a Write LCOMP. The RDY signal is pulled down for 3 cycles. The fact that both lines ID_I and UNC_I are pulled up indicates that the input vector is not recognized by any existing neuron. The subsequent Write CAT command will necessarily commit a new neuron.

When REG is equal to 04, the DS pulse triggers a Write CAT. The RDY signal is pulled down for 19 cycles.

4.3 RECOGNIZE A VECTOR

When REG is equal to 01, each DS pulse triggers a Write COMP. The RDY signal is pulled down for one cycle.

When REG is equal to 02, the DS pulse triggers a Write LCOMP. The RDY signal is pulled down for 3 cycles. The UNC_I is pulled down at the last negative edge of G_CLK before RDY is pulled back up. This indicates that the input vector is recognized by more than one neuron and that different categories are identified.


When REG is equal to 03 and RW_I remains high, the DS pulse triggers a Read DIST. The RDY signal is pulled down for 18 cycles which is the duration of the Search and Sort looking for the firing neuron with the smallest distance value. This distance is equal to 08.

When REG is equal to 04 and RW_I remains high, the DS pulse triggers a Read CAT. The RDY signal is pulled down for 19 cycles which is the duration of the Search and Sort looking for the firing neuron with a distance register equal to 08 and the smallest category value. This category is equal to 01.

Remark: Since it is known that the recognition status is uncertain (UNC_L is low), executing another series of Read DIST followed by Read CAT would report the distance and category of the next neuron with the smallest distance.

5 INTERCONNECTING CHIPS

One of the benefits of the NM500 architecture is that you can cascade multiple chips in parallel to expand the size of the neural network by increment of 576 neurons. The behavior of the neurons in a single-chip or multiple-chips configuration remains the same.

A chain of multiple chips is defined by connecting their NeuroMem bus together with external pull-up resistors when applicable (refer to the pinout table for details).

The external controller sending Read/Write commands to a chain of chips must be careful to release the bidirectional lines as soon as the Ready signal falls. Failure to do so will prevent the proper execution of commands interconnecting all the neurons together through the bi-directional lines of DATA, ID_, and UNC_.

5.1 COUNTING THE NEURONS IN A CHAIN OF UNKNOWN LENGTH

Write NSR 0x10 Set the SR mode

Write TESTCAT Value Commit all the neurons with a same category value

Write RESETCHAIN Point to the 1st neuron in chain

- Ncount=0

Do Loop

Read CAT, cat

Ncount++

Until cat=0xFFFF (Ncount-1) is the number of neurons in the chain

Write NSR 0x00 Cancel the SR mode

5.2 VERIFYING THE PROPER INTERCONNECTIVITY OF THE ENTIRE CHAIN

When multiple chips are assembled in a chain, their inter-connectivity needs to be verified to ensure proper learning and recognition. This inter-connectivity depends on mechanical and electrical constraints and this chapter describes the recommended functional verifications:

- All neurons auto-sort themselves per increasing distance value during a recognition. A corner case consists of balancing across the chips some neurons firing with a distance 0x0000 and others with a distance 0x7FFFF. Note that a distance 0xFFFF is not possible since in such case, the neuron does not fire. Also note that a knowledge involving this type is distance values is not realistic, but from an electrical and signal propagation standpoint, it is a good test of robustness.
- A neuron newly committed on the last chip of the chain can force a neuron on the first chip to shrink its influence field

To stimulate one neuron per chip, you can proceed as follows in your benchmarks:

- Learn or Load your test pattern (in normal or SR mode) under the default context value 1
- Use a secondary context to fill the remaining neurons of a given chip with dummy values. This part can be done in SR mode and limited to the following write instructions per neuron: NCR=2 and CAT= dummy value.

5.3 IF A CHAIN HAS MORE THAN 65535 NEURONS

The DATA bus being 16-bit wide, the NCOUNT register is not sufficient to report more than 65,535 (0xFFFF) neurons. In such case, the upper NID value must be reported on 24-bit as follows:

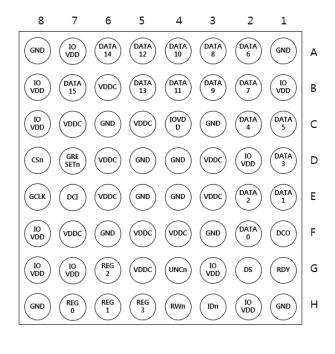
Operation	If chain <= 65535 neurons	If chain > 65535 neurons	
Report the number of	ncount= Read NCOUNT	N1=Read GCR	
committed neurons		N2=Read NCOUNT	
		ncount = (N1[15:8] * 0xFFFF) + N2[15:0]	
Report the identifier of	nid= Read NID	N1=Read NCR[7:0] (the bit reporting the identifier are	
the next closest firing		shifted to the lower byte at the time of the readout. The	
neuron		context information is dropped)	
		N2=Read NID[15:0]	
		nid= (N1[15:8] * 0xFFFF) + N2[15:0]	

5.4 SINGLE OR MULTIPLE CHAINS OF NEURONS

If an application uses neurons assigned to N different contexts, the hardware design may feature (1) a single chain of neurons segmented into N contexts, or (2) N chains of neurons, or a combination of both.

- (1) A single chain of neurons modeling N decision spaces based on N different types of features or contexts:
 - Optimization of the use of the neurons in a simple architecture
 - FPGA/CPU needs to access a single NeuroMem bus (26 lines)
 - FPGA/CPU may need provision for a single NeuroMem network expansion bus
 - But if speed performance are an issue, queries have to be submitted sequentially per context
- (2) N chain of neurons:
 - Queries can be submitted in parallel to the different chains of neurons, if the FPGA is programmed accordingly.
 - But higher cost in board design and component selection since the FPGA needs enough pins to provide access to N NeuroMem bus. Also, you may need provision to size each chain of neurons with some room for knowledge expansion per chain.

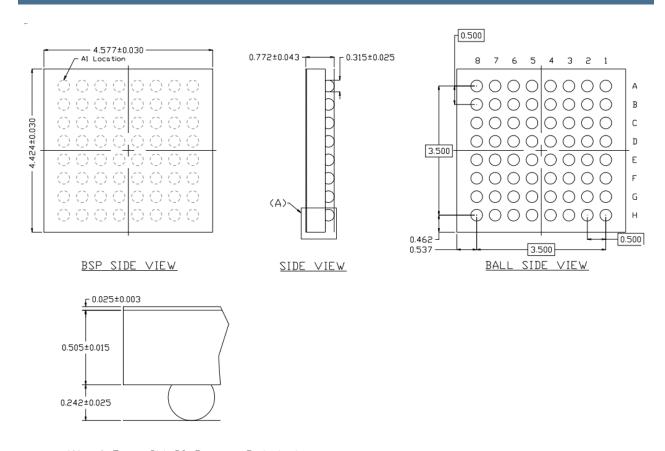
Things to consider:


- Do all contexts have to be queried all the time?
- Are some contexts secondary and only used to waive uncertainties from primary contexts?
- Are all contexts clearly sized in term of neurons, or not?

Example of an architecture where the FPGA can be configured to access a single chain of neurons or 2 separate chains of neurons.

6 PINOUT

Signal	Schematic	Case	Туре
DCI	E7	E7	Input
DCO	F2	F2	Output
D00	F2	F2	BiDir*
D01	E1	E1	BiDir*
D02	E2	E2	BiDir*
D03	D1	D1	BiDir*
D04	C2	C2	BiDir*
D05	C1`	C1	BiDir*
D06	A2	A2	BiDir*
D07	B2	B2	BiDir*
D08	A3	A3	BiDir*
D09	B3	В3	BiDir*
D10	A4	A4	BiDir*
D11	B4	B4	BiDir*
D12	A5	A5	BiDir*
D13	B5	B5	BiDir*
D14	A6	A6	BiDir*
D15	B7	В7	BiDir*
REG00	H7	H7	Input
REG01	H6	Н6	Input
REG02	G6	G6	Input
REG03	H5	H5	Input
CS_	D8	D8	Input
RST_	D7	D7	Input
G_CLK	D8	D8	Input
RDY	G1	G1	Output


ID_	H3	Н3	BiDir*
UNC_	G4	G4	BiDir*
R/W_	H4	H4	Input
DS	G2	G2	Input

(*) The bi-directional lines have internal pull-ups of 45 K Ω . These lines must be connected to additional external pull-ups when connected across multiple chips.

Power (1.2V)	Schematic	Case
VDDC	B6	В6
VDDC	C5	C5
VDDC	C7	C7
VDDC	D3	D3
VDDC	D6	D6
VDDC	E3	E3
VDDC	E6	E6
VDDC	F4	F4
VDDC	F5	F5
VDDC	F7	F7
VDDC	G5	G5
GND	Н8	Н8
GND	H1	H1
GND	F6	F6
GND	F3	F3
GND	E5	E5
GND	E4	E4

Power (3.3V)	Schematic	Case
VDDIO	A7	A7
VDDIO	B1	B1
VDDIO	B8	В8
VDDIO	C4	C4
VDDIO	C8	C8
VDDIO	D2	D2
VDDIO	F8	F8
VDDIO	G3	G3
VDDIO	G7	G7
VDDIO	G8	G8
VDDIO	H2	H2
GND	A1	A1
GND	A8	A8
GND	C3	C3
GND	C6	C6
GND	D4	D4
GND	D5	D5

7 MECHANICAL SPECIFICATIONS

(A) x4 Zoom CW 90 Degree Rotated

Die size	4.5 x 4.3 x 0.5 mm2
Process Geometry Technology:	110 nm
Packaging:	64 pin CSP 4x4 mm
Ball size	0.3 mm
Ball pitch	0.5 mm

NM500 is compliant to the JEDEC SOLID STATE TECHNOLOGY standard JESD22-102B.

8 ELECTRICAL SPECIFICATIONS

8.1 RECOMMENDED OPERATING CONDITIONS

Daramatars	Symbol	Value			Llait
Parameters	Symbol	Min	Тур.	Max	Unit
DC Supply for internal core	VDDC	1.08	1.2	1.32	V
DC Supply for I/O	VDDIO	3.0	3.3	3.6	V
Operating Temperature	TOPR	-40	25	125	°C
Storage Temperature	TSTG	-55		150	

Parameters	Symbol	Description	Value	Unit
DC Input (Latch-up) Current	IIN		100	mA

8.2 DC ELECTRICAL CHARATERISTICS

Parameters	Symbol	Value			Unit
Parameters		Min	Тур.	Max	Unit
High level input voltage	VIH	0.7*VDDIO		4	V
Low level input voltage	VIL	-0.3		0.3*VDDIO	٧
Switching threshold	VT	1.31	1.41	1.54	٧
Schmitt trigger, rising threshold	VTP	1.6	1.69	1.78	٧
Schmitt trigger, falling threshold	VTN	1.18	1.27	1.36	V
High level input current	IIH	-10		10	μΑ
Low level input current	IIL	-10		10	μΑ
High level output voltage	VOH	VDDIO-0.2			V
Low level output voltage	VOL			0.2	V

9 POWER CONSUMPTION

The NM500 is a neuromorphic memory chip and consequently it is in idle mode at all time except when executing a command.

9.1 PEAK POWER

Peak power occurs during the execution of Read or Write commands. Their latencies range between 30 ns to 1 μ s depending on the register to read or write.

Peak power depends on the clock frequency but most importantly on the values of the pull-up resistors attached to the bidirectional lines of the NeuroMem bus.

9.2 INTRINSIC POWER

The intrinsic power consumption for a targeted number of recognitions per second can be calculated by multiplying the number of cycles for a single recognition by the number of recognitions per second.

The number of cycles for a recognition depends on the length L of the vector and the level of details expected in the recognition ranging from a simple status taking 1 Read command, or the list of the K nearest neighbors with K ranging from 1 to a user defined value.

Operation	Clock cycles	@35 Mhz (single chip)	@18 Mhz (multi-chips)
		L=256, N=576, K=3	L=256, N=576, K=3
Learn a vector of length L	L+3 + 18	7.9 μs	15.4 μs
Status of a vector of length L	L+3+1	7.4 μs	14.4 μs
Best match of a vector of length L	L+3+37	8.3 μs	16.2 μs
Get the K top match of a vector of length L	L+3+ (K*37)	9.1 μs	17.8 μs
Save/Restore N neurons	4+ (N*260)	4.27 ms	8.3 ms

9.3 POWER SAVING TIPS

Since the DATA bus is composed of 16 internal pull-up lines, the broadcast of a value other than 0xFFFF on this bus will draw current until the execution of another command releasing its lines in whole or in part. The register POWERSAVE allows the release of the DATA bus (back to 0xFFFF) when no other Write command is expected.

10.1 HARDWARE QUESTIONS

The neurons do not learn

- The neurons will not learn if the UNC_ line is driven. Verify that it is in tri-state during a learning operation.

Standalone mode On/Off

- How low can you run VCCIO?
 - o 2.7 volts would work providing the core will have to stay above 1.2 volts.
- Do the neurons retain data when STDBY is asserted?
 - Yes, STDY cuts the internal clock and puts the neuron ram in very low power. As long as the core remains at 1.2 volts, the neurons' content is kept.
- How long does it take for the neurons to be ready after STDBY is de-asserted?
 - Next clock cycle
- How much power does the chip consume in standby?
 - o Should decrease by at least factor 10 according to specifications

10.2 FUNCTIONAL QUESTIONS

The neurons do not learn, nor recognize my vectors when I know it should

- Verify that the neurons are not in Save-and-Restore mode by reading the Network Status Register (NSR). If it is equal to 16 (0x10) then the neurons behave as dummy memories and cannot learn nor recognize.
- Verify that the Global Context Register (GCR) is set to the proper value. If you have learned your vectors while the GCR was equal to A, they will not be recognized if the GCR at the time of the recognition is different from A or 0.

10.3 WHAT IS THE DIFFERENCE BETWEEN CM1K AND NM500

The neurons of the NM500 and CM1K have the exact same behavior and use the same registers from 0x00 to 0x0F. The following table presents their differences.

Adapting a hardware design to migrate from the use of the CM1K to the NM500 should be easy.

Combining the use of both types of chips in a same architecture is also possible provided that the slowest clock of the two is in effect.

Differences	NM500	CM1K
Nominal clock single chip	35 Mhz	27 Mhz
Nominal clock multiple chip	18 Mhz	16 Mhz
Optional Reco logic	No	Yes
Registers 0x11 to 0x1F		
Output lines BUSY, CAT_VAL,		
DIST_VAL		
Optional I2C controller	No	Yes
Output lines BUSY		
Power in idle mode	3.3 mW	15 mW
Package	CSP64	TQFP100
Size	4x4 mm ²	8x8 mm ²