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Implementation of an RBF Neural Network on
Embedded Systems: Real-Time Face Tracking

and Identity Verification
Fan Yang and Michel Paindavoine

Abstract—This paper describes a real time vision system that
allows us to localize faces in video sequences and verify their
identity. These processes are image processing techniques and the
radial basis function (RBF) neural network approach. The ro-
bustness of this system has been evaluated quantitatively on eight
video sequences. We have adapted our model for an application of
face recognition using the Olivetti Research Laboratory (ORL),
Cambridge, U.K., database so as to compare performance against
other systems. We also describe three hardware implementations
of our model on embedded systems based, respectively, on field
programmable gate array (FPGA), zero instruction set computer
(ZISC) chips, and digital signal processor (DSP) TMS320C62. We
analyze the algorithm complexity and present results of hardware
implementations in terms of resources used and processing speed.
The success rates of face tracking and identity verification are,
respectively, 92% (FPGA), 85% (ZISC), and 98.2% (DSP). For
the three embedded systems processing speeds for images size
of 288 352 are, respectively, 14 images/s, 25 images/s, and 4.8
images/s.

Index Terms—Digital signal processor (DSP), face localization
and identity verification, field programmable gate array (FPGA)
device, radial basis function (RBF) neural networks, real-time im-
plementation, zero instruction set computer (ZISC) chip.

I. INTRODUCTION

H UMAN face recognition is an active area of research
spanning several disciplines such as image processing,

pattern recognition, and computer vision. Different techniques
can be used to track and process faces [1], e.g., neural networks
approaches [2]–[5], eigenfaces [6]–[8], and the Markov chain
[9]. Most researches have concentrated on the algorithms of
segmentation, feature extraction, and recognition of human
faces, which are generally realized by software implementation
on standard computers. However, many commercial and law
enforcement applications of human face recognition such as
human-computer interfaces, model-based video coding, and
security control [10]–[12] need to be high-speed and real-time,
for example, passing through customs quickly while ensuring
security.

Liu et al. [13] realized an automatic human face recognition
system using the optical correlation technique after necessary
preprocessing steps. Buhmannet al. [14] corrected changes in
lighting conditions with an analog very large scale integration
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Fig. 1. Radial basis function neural network.

Fig. 2. Decision region mapping in a 2-D space.

(VLSI) silicon retina in order to increase the face recognition
rate. Matsumoto and Zelinsky [15] implemented in real time a
head pose and gaze direction measurement system on the vi-
sion processing board Hitachi IP5000. Our aim is to implement
on embedded systems an efficient model of unconstrained face
tracking and identity verification in arbitrary scenes. Thus, we
would elaborate a robustness algorithm that requires moderated
computation.

Rosenblumet al. [16] developed a system of human ex-
pressions recognition from motion based on an radial basis
function (RBF) neural network architecture. Ranganathet al.
[17], [18] performed an integrated automatic face detection and
recognition system using the RBF networks approach. Howell
and Buxton [19] compared RBF networks with other neural
network techniques on a face recognition task for applications
involving identification of individuals using low-resolution
video information. The RBF networks give performance errors
of only 5%–9% on generalization under changes of orientation,
scale, pose, and lighting. Their main advantages are computa-
tional simplicity and robust generalization. Howell and Buxton
showed that the RBF network provides a solution which
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Fig. 3. Structure of the face tracking and identity verification model.

Fig. 4. 2� 12 learning faces.

can process test images in interframe periods on a low-cost
processor. The simplicity and the robust generalization of the
RBF networks approach, with its advantages due to the fact
that it can be mapped directly into the existing neural networks
chips lead us to elaborate our model using a RBF classifier.

We chose three commercial embedded systems for hardware
implementations of face tracking and identity verification.
These systems are based, respectively, on most common elec-
tronic devices: FPGA, zero instruction set computer (ZISC)
chips, and digital signal processor (DSP) TMS320C62. We
obtained processing speeds of, respectively, for three imple-
mentations: 14 images/s, 25 images/s, and 4.8 images/s.

This paper is organized into two parts: 1) description of the
model and 2) hardware implementations. Section II presents the
RBF network principle and explains the face tracking and iden-
tity verification scheme. Section III provides the experimental
results, and we compare our model against other methods using
the Olivetti Research Laboratory (ORL), Cambridge, U.K., face
database [20]. Section IV analyzes the algorithm complexity,
and Section V describes the three hardware implementations
and discussion. Section VI concludes the paper.

II. DESCRIPTION OF THEMODEL

A. Radial Basis Function Neural Networks

The RBF neural network [21], [22] has a feedforward archi-
tecture with an input layer, a hidden layer, and an output layer
as shown in Fig. 1. The input layer of this network hasunits
for an -dimensional input vector. The input units are fully
connected to the hidden layer units, which are in turn con-

nected to the output layer units, where is the number of
output classes. RBF networks belong to the category of kernel
networks. Each hidden node (unit) computes a kernel function
on input data, and the output layer achieves a weighted summa-
tion of the kernel functions. Each node is characterized by two
important associated parameters: 1), its center and 2) the width
of the radial function. A hidden node provides the highest output
value when the input vector is close to its center and this output
value decreases as the distance from the center increases. Sev-
eral distances can be used to estimate the distance from a center
but the most common is the Euclidean distance

(1)

The activation function usually chosen of the hidden node is a
Gaussian function

(2)

such that each hidden node is defined by two parameters: its
center and the width of the radial function .

B. Training Procedure of RBF Neural Networks

The training procedure undergoes a two-step decomposition:
estimating and and estimating the weights between the
hidden layer and output layer.

Estimate and : Conventionally, the unsupervised
-means clustering algorithm can be applied to findclusters

from the set of training vectors. However, the difference in the
facial appearance of one person due to a change of pose are
greater than that person’s difference from another person. In
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Fig. 5. Some results of face tracking and identity verification.

TABLE I
RESULTS: VARIATION OF THE INPUT VECTORLENGTHSUSING THEFIRST FOUR

SEQUENCES(SEEFIG. 5)

TABLE II
RESULTS: VARIATION OF USEDMEASUREDDISTANCESWITH A SUBSAMPLING

1 PIXEL/4 ON EACH ROW

order to only obtain clusters according to identity, the-means
clustering algorithm was used in a supervised manner. It is
respectively applied to training feature vectors belonging to
each person. This was inspired by an algorithm proposed by

TABLE III
RESULTS: VARIATION OF RBF KERNEL ACTIVATION FUNCTIONS USING

MEASUREDDISTANCEd (xxx) WITH A SUBSAMPLING 1 PIXEL/4 ON EACH ROW

Musaviet al. [23]. Initially, we have training points (vectors)
in an -dimensional space and each training point is a cluster
as follows:

1) take any point and its associated width (initially
);

2) find the nearest point of the same class by using the
Euclidean distance;

3) compute the mean of these two points; we obtain a new
point with its associated width ;

4) compute the distance from the new mean to the nearest
point of all other classes;

5) if , then accept the merge of and and start
again from step 2; if the condition is not satisfied, reject
the merge and recover the two original points and their
widths, then restart from step 1);

6) repeat steps 1)–5) until all clusters of each class be used.
is the “clustering parameter” with [23]. We use the

value in our case. Finally, we obtain the Gaussian centers
and the widths of the hidden nodes. We

can see (Fig. 2) the result after using this clustering algorithm for
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Fig. 6. Some images from the ORL database.

two classes in a two-dimensional (2-D) feature space. Note that
we obtain two nonlinear decision regions. In fact, RBF neural
networks can map spaces of any shape (nonlinear, convex, dis-
joint spaces). They use overlapping simple functions to cover
complex decision regions.

Estimate the weights between the hidden and output layer
: Given that the Gaussian function centers and widths are com-
puted from training vectors, the connection weights between
the hidden and output layers can be calculated using the pseudo-
inverse matrix method.

C. Model Description: Face Tracking and Identity Verification

Many face recognition algorithms require segmenting the
face from the background, and subsequently extracting fea-
tures such as eyes, nose, and mouth for further processing.
We propose an integrated automatic face localization and
identification model only using a classifier which responds
to the question, “Does the input vector correspond or not the
person to be verified?” The idea behind this is to simplify the
model and reduce computation complexity in order to facilitate
hardware implementations.

Fig. 3 represents the structure of our model. The size of faces
in the scene varies from 4032 pixels to 135 108 pixels
with four scales. The ratio between any two scales is fixed to
1.5 [19], [24]. We first subsample the original scene and extract
only the 40 32 windows in the 4 subsampled images. Each
pre-processed 40 32 window (see Section III-A) is then fed to
RBF network as an input vector. After the training procedure,
the hidden nodes obtained are partially connected to the output
layer. In fact, the hidden nodes associated with one person are
only connected to the output node representing this class. This
technique reduces data dependencies and is computationally
more efficient [18]. The decision stage yields the presence,
position, identity and scale of the faces using the maximal
output values of the RBF neural network.

III. EXPERIMENTS AND RESULTS

In this section, we present results obtained by using several
configurations with our model. Experiments are based on
eightvideo sequences of 256 images. In all sequences, the
scene size is 288 352 pixels. In the first four sequences (see
Fig. 5), there are either zero, one, two, or three different faces
presented. We have decided to verify two persons (Soph and
Seb) in these sequences. The 12 same training faces (see Fig. 4)
are used for each person in order to compare the different
configurations of the model.

A. Variation of the Input Vector Lengths

In this section, we try to reduce the input vectors length of the
RBF network in order to simplify hardware implementations. In
the preprocessing stage, we use first all pixels of each 4032
window to compose the feature vectors. Each pixel represents

TABLE IV
RESULTS OFFACE RECOGNITION WITH ORL DATABASE: THESERESULTS

HAVE BEEN OBTAINED WITH THE DISTANCE d (xxx) AND THE GAUSSIAN

ACTIVATION FUNCTION. HERE, NUMBER OF RECOGNIZED REPRESENTS

THE NUMBER OF FACES TO BERECOGNIZED AND NUMBER OF

INTRUDER INDICATES THE NUMBER OF FACES TO BEREJECTED

TABLE V
COMPARISON OFRECOGNITION RATES AGAINST OTHER METHODS

USING ORL DATABASE

one component of the vector. So, the input vectors of RBF neural
network have 40 32 components. Second, we minimize the
number of components in order to reduce the computing time.
We realize a subsampling preprocessing: sample one pixel out
of 4, 8, and 16 on each row of each window. We display some
tested images (see Fig. 5). Results of face tracking and identity
verification are presented in Table I. Efficiency of the model is
defined as follows:

• correct detection and identification: the face is correctly
located and identified;

• no detection: a presented face is not detected;
• incorrect detection: a face is not correctly located.

Performance decreases quickly when the input vectors have
80 components. In fact, incorrect detection regularly, appears
when we use only one pixel out of 16 on each row of a window.
The best results are obtained with one pixel out of four.

B. Variation of Used Measured Distances

Previous results were obtained using the Euclidean distance
to compute the difference between an input vectorand

the centers (kernels)for each hidden node of the RBF neural
network,

(3)

where is the number of components in an input vector.
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Fig. 7. Multiscaled face tracking and identity verification.

The distance is usually better when we use some noisy
images [25]

(4)

Another distance considers only the components whose differ-
ence between and is greater than a threshold

(5)

Here, the threshold has been regulated to 10 [25]. Table II
shows that we have the best result with the distance.

C. Variation of RBF Kernel Activation Functions

The Gaussian function is usually taken as the kernel activa-
tion function

(6)

where is the measured distance between the input vector
and the center.

Another approach is the use of a simplified activation, for ex-
ample the replacement of the Gaussian function in the RBF net-
work by a Heaviside function leading to a simplified hardware
implementation. The width of this function is the widthasso-
ciated to the corresponding center

(7)

If one of the centers (hidden nodes) of the same class
produces an active response, the output unit linked to this
class gives a positive response. Comparative results are shown
in the Table III. The number of no-detections has increased with
the Heaviside function. The rate of correct results decreases
from 98.2% to 93.4%. In fact, the RBF neural network using
the Heaviside function restrains the capacity of generalization
by lack of interactions between centers of a same class: the
model only detects faces that are sufficiently close to training
examples.

Among all configurations of the model, the best performance
has been obtained with 320 components of input vectors (sub-
sampling 1 pixel/4 on each row of a window), using measured
distance and the Gaussian activation function : the success
rate is 98.2%. Almost all the faces are well detected, localized,
and identified in these four sequences of images (1024 scenes).
Note that we have succeeded in regrouping 12 example training
vectors for each person in six or eight centers (hidden nodes)
using the clustering algorithm.

D. Face Recognition With ORL Database

We have adapted our model of face tracking and identity
verification for an application of simple face recognition that
we use for ORL database of faces [20]. This contains 400
grayscale images of 40 persons, each image has a resolution
of 92 112. Some individuals have images taken at different
times. Variations allowed in the image included lighting, facial
expressions and facial details. All the images were taken against
a plain background, with tilt and rotation of up to 20and scale
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TABLE VI
RESULTS: VARIATION OF FACE SCALES WITH A SUBSAMPLING 1

PIXEL/4 ON EACH ROW

Fig. 8. Image scanning with a slippery window.

variation of up to 10%. Fig. 6 displays some images from ORL
database. In order to use ORL data with the RBF network,
we subsampled each image in order to obtain a resolution of
16 16 pixels [25] and the recognition was directly applied
on these faces. The number of persons to verify is fixed at 40.
One, three, or five arbitrarily chosen images of each individual
makeup the training examples (number of patterns for learning
by individual ), and the rest of the faces are used
to test the model. Several executions have been realized with
each value of distributing arbitrarily the training set and the
test set. Then their means must be calculated and presented
in Table IV. Efficiency is defined as follows:

correct—correct recognition of a face;
nonrecognition—a face has not been recognized;
confusion—a face is confused with an intruder.

For example, if we take , then each output unit (associated
to a class) would have to recognize nine faces of its class and to
reject the 9 faces corresponding to the other classes
(intruders). With , we have a success rate of 97%, which
is very close to or superior to the performances announced in
the literature[9], [19], [25] (see Table V). Our system presents
the advantages of moderate computational requirements and
limited memory requirements. For example, generally when a
method uses training vectors by individual, our clustering
algorithm allows us to use only 2 or 3 centers by individual.

E. Variation of Face Scales

We have applied our algorithm to the last four video se-
quences in which we can observe a great variation of the size
of the faces and various lighting conditions. The analysis with
four scales allows us to track and identify faces whose sizes
vary from 40 32 to 135 108 pixels in the original scene
(see Fig. 7). The results are shown in Table VI, and the success
rates are, respectively, 97.4% using measured distance
and the Gaussian activation function, and 91.9% using distance

and the Heaviside function.

Fig. 9. Input vectors extraction.

Fig. 10. Architecture of the MEMEC board.

Fig. 11. Organization’s tasks on the MEMEC board.

Fig. 12. Different controllers coded in VHDL [finite state machine (FSM)].
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TABLE VII
RESULTS OF THEFIRST IMPLEMENTATION ON THE MEMEC BOARD

Fig. 13. Pipeline technique applied to each processing stage.

TABLE VIII
NECESSARYOPERATION NUMBERS FOREACH STAGE OF FIRST

IMPLEMENTATION: V REPRESENTS THENUMBER OF WINDOWS TO BE

ANALYZED, A AND D CORRESPOND TO THENUMBERS OFADDITIONS

AND DIVISIONS FORINPUT VECTORSEXTRACTION. A , S, AND O ARE

THE NUMBERS OFADDITIONS, SUBTRACTIONS AND COMPARISONS FOR

DISTANCE AND DECISION CALCULATION . THESE RESULTS HAVE BE

OBTAINED USING (8)–(16)

Our aim is to realize face tracking and identity verification
in real time on embedded systems. This is why we consider the
“mapping algorithm architecture” in order to optimize the im-
plementation. For example, we have reduced the complexity and
the volume of calculation using the partial connection between
the hidden layer and the output layer of RBF neural network.
With the clustering algorithm, we have succeeded in reducing
the number of hidden nodes. We have also evaluated our model
with the distance and the Heaviside activation function
which are easier to realize hardware implementations and give
an acceptable performance (close to 92% success rate). In Sec-
tion IV, we analyze each stage of the complexity of our model
in order to prepare hardware implementations.

IV. FROM ALGORITHM TO ARCHITECTURE: COMPLEXITY OF

THE MODEL

A. Number of Windows to be Analyzed

We use a slippery window of dimension applied to
a image (see Fig. 8). The dimension of this window as

Fig. 14. Computing time diagram for the first implementation.

TABLE IX
RESULTS: REALIZATION ON THE MEMEC BOARD

well as the displacement scan step along the row and column
determine the number of windows to be analyzedthat we
calculate by

(8)

where is the number of rows in the image,is the number of
columns, is the number of rows in a window, the number
of its columns, the scan step along the columns of the image,
and the scan step among the rows.

For scales (scale )

(9)

we use the same dimension of slippery window for each scale
as well as the same displacement scan step. We take, , ,
and constant to each scale. The previous equation becomes

(10)

B. Input Vectors Extraction

In order to simplify the hardware implementations of our
model we reduce its complexity. Originally, input vectors of
RBF network are obtained by subsampling one pixel out of
four of each row in slippery windows of 4032 pixels. Thus,
we have 320 components by vector. Here, we approximate
this stage of subsampling using the average of four successive
pixels. On each row of each window, we compute the sum
of eight consecutive 4–pixel blocks (see Figs. 8 and 9). We
vertically scan the image to be analyzed so as to use the
redundancy of components of a vector with its following. We
thus reduce the calculation linked to input vectors extraction.
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(a)

(b)

Fig. 15. (a) Neurosight block diagram and (b) the board picture.

The number of necessary additions for the calculation of the
vector linked to the first window of each column is

(11)

In order to form each new vector from following windows
of each column, it suffices to add to the preceding 8
new components. In order to analyze an image with only one
scale, the number of necessary additions for the extraction of
all vectors is

(12)

In the same manner, we obtain the number of necessary divi-
sions for the extraction of all vectors

(13)

C. Distance and Decision Calculation

Equations (4) and (5) show that the complexity of the distance
is almost identical to that of the distance . By using

the distance , we obtain performances slightly superior to
those of the distance (see Tables II and VI), however con-
trolling the threshold of this distance is difficult. Our group
has therefore focused on the distance . This distance cal-

TABLE X
NECESSARYOPERATION NUMBERS FOREACH STAGE OF SECOND

IMPLEMENTATION: V REPRESENTS THENUMBER OF WINDOWS TO BE

ANALYZED, A AND D CORRESPOND TO THENUMBERS OFADDITIONS

AND DIVISIONS FORINPUT VECTORSEXTRACTION. A , S, AND O ARE

THE NUMBERS OFADDITIONS, SUBTRACTIONS AND COMPARISONS FOR

DISTANCE AND DECISION CALCULATION . THESE RESULTS HAVE BE

OBTAINED USING (8)–(16)

Fig. 16. Distribution’s tasks on the neurosight board.

Fig. 17. Different controllers coded in VHDL for the second hardware
implementation.

TABLE XI
RESULTS OF THESECONDIMPLEMENTATION ON THE NEUROSIGHTBOARD

culation demands subtractions and additions by center
[see (4)]. We have

(14)

(15)

where and are respectively the number of necessary addi-
tions and subtractions for an image linked to distance calcula-
tion. corresponds to the number of components in each input
vector and is the total number of hidden nodes. The output
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Fig. 18. Computing time diagram for the second implementation.

layer of the neural network usesbinary logic function “or” with
Heaviside activation function in hidden layer: each center com-
pares the calculated distance with the distance threshold deter-
mined during the training step. We have used such comparisons
as centers. So

(16)

represents the maximum number of comparisons to compare all
responses of the RBF network contained in an image.

V. HARDWARE IMPLEMENTATIONS

Hardware implementations of the RBF approach have be
realized for different applications, on either FPGA [26], or
neurochip [27]. Commercial RBF products include the IBM
ZISC chip and the Nestor Ni 1000 chip [28]. Here, our aim is
to elaborate in real time an efficient model of unconstrained
face tracking and identity verification in arbitrary scenes. Thus,
hardware implementations have been realized on three em-
bedded systems based on FPGA, ZISC chip, and DSP. We
use industrial electronic systems: a MEMEC board [29], a
general vision neurosight board [30], and a board based on
DSP TMS320c6x developed in our laboratory. We discuss first
for each case the architecture of the system. Then results are
presented in terms of hardware resources used and processing
speed, and we compare the three implementations and propose
the possible improvements. Note that these implementations
are used for face tracking and identity verification with only
one scalescale . A more complete future realization will
take into account different scales.

A. First Realization: Implementation Based on FPGA

1) Hardware Resources:This first implementation is real-
ized on aMEMEC industrial board [29] comprising a FPGA
Xilinx SpartanII-300[31], which contains 3072 “slices” (slice

basic cell logic of FPGA) and 16 memory blocks of 512 bytes
each (Fig. 10). We have implanted on the FPGA our model of
face tracking and identity verification with the VHDL descrip-
tion using Xilinx ISE tool [31].

This implementation creates an RBF neural network with
15 hidden nodes. Each hidden node stores a center vector of

TABLE XII
RESULTS: REALIZATION ON THE NEUROSIGHTBOARD

320 components. The used measured distance is the distance
. The activation function of each center is a Heaviside

function whose associated width delimits the influence area of
the center. Figs. 11 and 12 show the organization’s tasks and
the coding of these tasks using VHDL description for this first
hardware implementation. The original video image is stored in
an image memory bank with each pixel coded on a byte, the
input vector extraction consists of calculating averages of four
successive pixels on rows of the image. Each vector is fed to the
15 hidden nodes of the RBF network which gives their respec-
tive responses in parallel. In Table VII, we present information
on FPGA resources used. The input vectors extraction needs 57
“slices” in order to define the image memory access and the
interaction logic with centers. A memory block (FIFO) is nec-
essary to store input vectors to be tested. Each trained center
needs one memory block and 29 slices for calculation (distance,
activation function, decision). This implementation uses 827
“slices” (27% of total resources). Note that the number of cen-
ters is limited by the number of independent internal memory
blocks.

2) Processing Speed:The complete implementation is real-
ized in parallel using the pipeline technique for each stage of the
processing (see Fig. 13). The images size is 288352 and con-
tains 161 windows of 40 32 pixels each. The
displacement scan step along the row is and along the
column is [see (10)]. We realized, respectively, 49.65M
additions, 48.8M subtractions, 370 944 divisions, and 142 002
comparisons (see Table VIII).

We determined the number of clock periods, , required
for each stage of the process in order to analyze one image (see
Fig. 14). The first windows of the first column needs
(320 components ) to calculate 320 components of its
input vector and then to obtain the decision of all cen-
ters. This first window is tested using . We require only
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Fig. 19. Internal architecture of DSP TMS320 C6201.

32 new components (eight components by row of the window
four new rows) to form the following vector. This input

vector extraction is defined while centers determine the re-
sponses of RBF network linked to the previous window. So, 62
following windows of this column use 322
to be tested. This first column of the image is analyzed in

. The first window of each next column requires only
in order to be processed. Sixty-two other windows of

these columns need in order to be tested. This
implementation uses for one image of 288 352
with one scale. The oscillator frequency on the board is 50 Mhz

. The processing speed of this first implemen-
tation is 14 images per second with a success rate of 92% for
face tracking and identity verification (see Table IX).

B. Second Realization: Implementation Based on ZISC Chip

1) Hardware Resources:We also made hardware imple-
mentation of our model using a commercial board linked to
pattern recognition applications. ThisGeneral Vision Neu-
rosightboard [30] contains a CMOS sensor (288352 pixels),
an FPGA Xilinx SpartanII-50, two memory banks of 512KB
each, as well as two specific ZISC chips [28] (see Fig. 15).

One ZISC [30] chip contains 78 RBF-link nodes with a max-
imal length of input vectors . The used measured dis-
tance and the activation function of each node are, respectively,
the distance and the Heaviside function. We adapt the
complexity of the model to this embedded system. At first, we
reduce the size of the original image by keeping only one line
out four. This new image obtained (size 72352) is then ana-
lyzed with a slippery window of 8 32. On each row of each
window, we compute averages of eight consecutive four pixels
blocks. Each window yields an input vector of 64 components
to be analyzed by the ZISC chip. We have win-
dows (65 windows per row and 161 windows per column) to be
tested with , , , , and ,

(10). Necessary operation numbers to be realized, are
respectively, 10.16 M additions, 10.05 M subtractions, 92 736
divisions, and 146 510 comparisons (see Table X).

We implement the input vectors extraction and all interfaces
(memory access, ZISC access) on the FPGA Xilinx Spar-
tanII-50. Figs. 16 and 17 show the distribution’s tasks on the
Neurosight board and the different levels of control coded in
VHDL.

Table XI presents information on hardware resources used for
this second implementation. The input vectors extraction imple-
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Fig. 20. Block diagram and the board picture of the third embedded system.

mentation requires the same resources as those used with the
MEMEC board. Here, we use only one ZISC chip (78 nodes
maximum).

2) Processing Speed:We have determined the number of
clock periods, , required for each stage of the process in
order to analyze one image (see Fig. 18) like for the first re-
alization. This second implementation uses for one
288 352 image with one scale. The oscillator frequency on
the board is 33 Mhz ( ). The processing speed of
this second implementation is 25 images/s with a success rate of
85.3% for face tracking and identity verification (see Table XII).

C. Third Realization: Implementation Based on DSP

1) Hardware Resources:DSPs are specific processors des-
tined for signal and image processing [32]. The C6x family is

the last generation Texas Instruments DSP. They are available
in fixed point (C62x and C64x) and floating point (C67x) ver-
sions, and CPU frequencies range from 150 MHz to 600 MHz.
It is possible to do eight operations per clock-cycle with these
DSPs. The program fetches, dispatches instruction, and decodes
instruction units can deliver up to eight 32-bit instructions to
functional units every CPU clock cycle. The instruction pro-
cessing occurs in each of the two data-paths (A and B), each of
which contains four functional units, one multiplier and three
arithmetic logic unit (ALU), and 16 32-bit register files (see
Fig. 19).

Our laboratory has developed a system based on a DSP
TMS320 C6201B (see Fig. 20). A CCD sensor sends 16-bit
data to the DSP via a complex programmable logic devices
(CPLD). The DSP performs different processing and sends the
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Fig. 21. Sequential diagram of input vectors extraction.

resulting images to a PC via a universal serial bus (USB). We
have chosen a ROM boot process from a flash memory for
the DSP (embedded board) [33]. Two SDRAM memories of

32 bits are available to store images between the different
processings [34].

The third hardware implementation of our model for face
tracking and identity verification is realized on this embedded
system. The goal is to optimize in Assembler each stage of pro-
cessing using, in parallel, eight functional units of TMS320 DSP
C6201. We give implementation details for the input vectors
extraction stage as an example. The corresponding calculation
of this stage is represented by the followingfunction: For

, where and are vec-
tors which contain, respectively, 1280 and 320 byte elements.
So, in order to minimize the memory access, we access data 4

4 by loading a 32-bit word in each cycle. The sequential dia-
gram below (Fig. 21), shows all processing steps applied to data
during this stage of input vectors extraction.

Details of optimized implementation in parallel on 8 func-
tional units are shown in the Table XIII. The goal of the
optimized implantation is to use in parallel the maximum
number of DSP functional units. Note that the detail is given
only for data-path A [33]. The same progress concerns the
data-path B, and allows us to divide halve the processing time.
The A1 A9 and B0 B2 correspond to registers of the
DSP TMS320C6201. Italic lines correspond to loop control
and line skip instructions. The A2 register is used for the loop
index and registers B0, B1, and B2 correspond to the flags that
control the line skip at the appropriate instant. The A1 register
points to source data and A10 points to result data. Efficiency
indicates number of units used divided by eight units of DSP.

2) Processing Speed:Tables XIV and XV show, respec-
tively, experimental implementation results obtained using
the DSP C6201 and simulation results obtained using the
DSP C64x with the development tool, Code Composer Studio
(Texas Instruments). Theses results are in terms of processing
speed. We have applied a vertical window (4032 pixels)
displacement to use the calculation redundancy for the input
vectors extraction stage. We give some parameters for the
following results:

TABLE XIII
PARALLEL IMPLEMENTATION OF INPUT VECTORSEXTRACTION FOR

ith LOOPSTEP

TABLE XIV
IMPLEMENTATION RESULTSUSING TMS320 C6201

TABLE XV
SIMULATION RESULTSUSING TMS320 C64X

• only one scalescale of initial image (288 352
pixels) is implemented which requires the most calcula-
tions in comparison with the other scales;

• , , and number of hidden nodes ;
• used measured distance and the activation function of each

node are, respectively, the distance and a Gaussian
function; the number of components of input vector

;
• number of windows to be analyzedand the numbers of

additions and divisions for input vectors extraction,
are identical that the first implementation;

• correct rate of 98.2% is obtained for face tracking and
identity verification.

D. Discussion on Three Hardware Implementations

Table XVI compares hardware complexity of three em-
bedded systems. Note that some components (CPLD, Flash
Memory, Connector JTAG ) can elaborate embedded systems,
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TABLE XVI
HARDWARE COMPLEXITY COMPARISON OFTHREEEMBEDDED SYSTEMS

TABLE XVII
HARDWARE IMPLEMENTATIONS COMPARISON

however, they are not used in our hardware implementations
of face tracking and identity verification. The comparisons
among results of three hardware implementations are shown in
Table XVII.

Hardware resources used of the FPGA system are three times
those used of the ZISC system, in terms of slices (827 versus
292). On the other hand, only an internal memory block is used
on the ZISC system while all blocks (16 memory blocks) are
used on the FPGA system. Occupation rate in terms of slices and
memory blocks are, respectively, 38% and 12.5% for the ZISC
system against 27% and 100% for the FPGA system. The great
advantage of the ZISC is that it has 156 totally parallel hidden
nodes while we have only 15 nodes on the FPGA system.

The ZISC processing speed is superior (25 images per second
versus 14 images per second for the FPGA) while the perfor-
mance associated with this system is the weakest (success rate
of 85% against 92% for the FPGA system). The performance
difference is essentially linked to the fact that the input vectors
coded on the ZISC have a maximum length of 64 components.

A greater input vectors length of the ZISC specific chip would
allow to performance increase of face tracking and identity veri-
fication. On the other hand, the pippeline placement of registers
that stock the vector to be tested in each node would allow a re-
duction of the loading time from to (see Fig. 18).
This is linked to the redundancy of two successive vectors com-
ponent. For the FPGA system, three improvements are foresee-
able, we can double the number of nodes if input vectors length

is limited to a maximum of 256 components, because memory
blocks of the FPGA possess a double access port (division of
a block in two blocks of 256 bytes each). On the other hand,
we can double the processing speed on this system. Indeed,
we can divide the inputs vectors in two half-vectors (the input
vector here has 512 components in maximum) stocked each in a
half-block memory. To test an input vector, we input the distance
calculation of this vector and a node and this can be realized in
parallel on each half-vector. We can also extract two half-vec-
tors to be tested in parallel because the image memory equally
possesses a double access port.

For the third implementation, thanks to the performances by
the DSP TMS320 C6201, we optimized our model in its ideal
configuration and we have obtained a success rate of 98.2%.
On the other hand the processing speed is inferior to the two
preceding implementations (4.8 images/s versus 14 images/s for
the FPGA and 25 images/s for the ZISC). The processing speed
would increase to 28.6 images/s using the DSP TMS320 C64.

VI. CONCLUSION

We created a model that allows us to detect the presence of
faces, to follow them, and to verify their identities in video se-
quences using a RBF neural network. The model’s robustness
has been tested using eight video sequences and the ORL face
database. The best performance has been obtained with the fol-
lowing configuration: one subsampling of a pixel/4 for each row,
the measured distance and the Gaussian activation func-
tion. In fact, the subsampling preprocessing and the application
of the distance render the model less sensitive to face de-
tails and to the small differences between training examples and
test windows, thus, we have the better generalization.

In relation to the lighting problem, we have tested the method
proposed by Rowley [4] that consists of approximating the vari-
ation of lighting inside a oval mask (face) by a linear function
in order to balance brightness distribution of a window. This
improves the success rate in video sequences where there is a
great variation in lighting [35]. The important calculation re-
quired for this method would considerably reduce hardware im-
plementation performances. We envisaged adding in the exam-
ples training set synthesis faces which are formed by simulating
the different conditions of lighting. Another solution based on
the strategy of evaluative neural networks is to train the model
with the last detected faces.

We have demonstrated the feasibility of face tracking and
identity verification in real time using existing commercial
boards. We have implanted our model on three embedded sys-
tems. The success rate of face tracking and identity verification
is, respectively, 92% (FPGA), 85% (ZISC), and 98.2% (DSP).
Processing speeds obtained for images of size 288352 are,
respectively, 14 images/s, 25 images/s, and 4.8 images/s. The
discussion of these implementations allows us to propose
possible improvements for the architecture of each embedded
system.

Our model integrating 15 hidden nodes allows us to distin-
guish two faces with a good performance ( of success
rate). Extending this model to recognition of more faces
necessitates a calculation power superior to 10 Giga flops and,
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thus, new architectures must be developed. They can be de-
veloped using more effective components, for example,FPGA
VirtexII (integrating many multipliers and memories) orDSP
TMS320C64, thus allowing a very rapid processing speed and
better performance of face tracking and identity verification.

Our short-term perspective is to complete implementations
using all four scales of images. A long term perspective is to
extract input vectors of RBF neural network using an artificial
retina, unloading a consequent calculation part of FPGA. Fi-
nally, we also would link to test our model on other applications
of pattern recognition such as vehicle detection and tracking in
real time.
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