1162 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

Implementation of an RBF Neural Network on
Embedded Systems: Real-Time Face Tracking
and Identity Verification

Fan Yang and Michel Paindavoine

Abstract—This paper describes a real time vision system that Hidden layer

allows us to localize faces in video sequences and verify their
identity. These processes are image processing techniques and the
radial basis function (RBF) neural network approach. The ro-
bustness of this system has been evaluated quantitatively on eight
video sequences. We have adapted our model for an application of
face recognition using the Olivetti Research Laboratory (ORL),
Cambridge, U.K., database so as to compare performance against
other systems. We also describe three hardware implementations
of our model on embedded systems based, respectively, on field ;
programmable gate array (FPGA), zero instruction set computer £.(%) = expl- I1X- 11252 ) i
(ZISC) chips, and digital signal processor (DSP) TMS320C62. We ' !
analyze the algorithm complexity and present results of hardware
implementations in terms of resources used and processing speed.':'g' 1.
The success rates of face tracking and identity verification are,
respectively, 92% (FPGA), 85% (ZISC), and 98.2% (DSP). For

the three embedded systems processing speeds for images size

of 288 x 352 are, respectively, 14 images/s, 25 images/s, and 4.8
images/s.

centers ¢ ¢, ¢
Input layer Output layer

Radial basis function neural network.

Index Terms—DPigital signal processor (DSP), face localization
and identity verification, field programmable gate array (FPGA)
device, radial basis function (RBF) neural networks, real-time im-
plementation, zero instruction set computer (ZISC) chip.

@ Class A
|. INTRODUCTION O Class B

UMAN face recognition is an active area of researchg. 2. Decision region mapping in a 2-D space.
spanning several disciplines such as image processing,

pattern recognition, and computer vision. Different techniqueg|_sj) silicon retina in order to increase the face recognition
can be used to track and process faces [1], e.g., neural netWegg. Matsumoto and Zelinsky [15] implemented in real time a
approaches [2]-[5], eigenfaces [6]{8], and the Markov chajead pose and gaze direction measurement system on the vi-
[9]. Most researches have concentrated on the algorithmssgfn processing board Hitachi IP5000. Our aim is to implement
segmentation, feature extraction, and recognition of humgR embedded systems an efficient model of unconstrained face
faces, which are generally realized by software implementatigicking and identity verification in arbitrary scenes. Thus, we
on standard computers. However, many commercial and Igyuld elaborate a robustness algorithm that requires moderated
enforcement applications of human face recognition such @mputation.
human-computer interfaces, model-based video coding, an®gsenblumet al. [16] developed a system of human ex-
security control [10]-[12] need to be high-speed and real-timgressions recognition from motion based on an radial basis
for example, passing through customs quickly while ensurifignction (RBF) neural network architecture. Ranganettial.
security. [17], [18] performed an integrated automatic face detection and
Liu et al.[13] realized an automatic human face recognitiomcognition system using the RBF networks approach. Howell
system using the optical correlation technique after necessgng Buxton [19] compared RBF networks with other neural
preprocessing steps. Buhmaeinal. [14] corrected changes in hetwork techniques on a face recognition task for applications
lighting conditions with an analog very large scale integratiofyolving identification of individuals using low-resolution
video information. The RBF networks give performance errors
Manuscript received September 15, 2002; revised March 15, 2003. of only 5%—-9% on generalization under changes of orientation,
The authors are with the Laboratoire LE2I, Aile de I'lngénieur, MirandeUnigcgle, pose, and lighting. Their main advantages are computa-
versité de Bourgogne, BP 400-21011 Dijon Cédex, France (e—mall:fanyang@ilé—ﬂaI simplicity and robust generalization. Howell and Buxton

bourgogne.fr; paindav@u-bourgogne.fr). ) ] -
Digital Object Identifier 10.1109/TNN.2003.816035 showed that the RBF network provides a solution which
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Fig. 3. Structure of the face tracking and identity verification model.
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Fig. 4. 2x 12 learning faces.

can process test images in interframe periods on a low-cosicted to theJ output layer units, wherd is the number of
processor. The simplicity and the robust generalization of thetput classes. RBF networks belong to the category of kernel
RBF networks approach, with its advantages due to the faettworks. Each hidden node (unit) computes a kernel function
that it can be mapped directly into the existing neural networks input data, and the output layer achieves a weighted summa-
chips lead us to elaborate our model using a RBF classifier. tion of the kernel functions. Each node is characterized by two

We chose three commercial embedded systems for hardwianportant associated parameters: 1), its center and 2) the width
implementations of face tracking and identity verificationof the radial function. A hidden node provides the highest output
These systems are based, respectively, on most common eledie when the input vector is close to its center and this output
tronic devices: FPGA, zero instruction set computer (ZIS@glue decreases as the distance from the center increases. Sev-
chips, and digital signal processor (DSP) TMS320C62. Weal distances can be used to estimate the distance from a center
obtained processing speeds of, respectively, for three imphest the most common is the Euclidean distance
mentations: 14 images/s, 25 images/s, and 4.8 images/s.

This paper is organized into two parts: 1) description of the d(x) = [|x —ci|. 1)
model and 2) hqrdvyare |mpleme(1tat|ons. Section !I presepts tﬂ?e activation function usually chosen of the hidden node is a
RBF network principle and explains the face tracking and |de§- . .

. L ; . ) aussian function
tity verification scheme. Section Il provides the experimental
results, and we compare our model against other methods using fi(z) = exp<—d<ﬂv)2/of) 2)
the Olivetti Research Laboratory (ORL), Cambridge, U.K., face
database [20]. Section IV analyzes the algorithm complexitgich that each hidden node is defined by two parameters: its
and Section V describes the three hardware implementati@esiterc; and the width of the radial functiosm;.
and discussion. Section VI concludes the paper. .
B. Training Procedure of RBF Neural Networks

[I. DESCRIPTION OF THEMODEL The training procedure undergoes a two-step decomposition:
estimatinge; and o; and estimating the weights between the
hidden layer and output layer.

The RBF neural network [21], [22] has a feedforward archi- Estimate ¢; and o;: Conventionally, the unsupervised
tecture with an input layer, a hidden layer, and an output layk/means clustering algorithm can be applied to findusters
as shown in Fig. 1. The input layer of this network Basinits  from the set of training vectors. However, the difference in the
for an N-dimensional input vector. The input units are fullyfacial appearance of one person due to a change of pose are
connected to thd hidden layer units, which are in turn con-greater than that person’s difference from another person. In

A. Radial Basis Function Neural Networks
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Fig. 5. Some results of face tracking and identity verification.

TABLE |
RESULTS VARIATION OF THE INPUT VECTORLENGTHSUSING THE FIRST FOUR
SEQUENCES(SEE FIG. 5)

Number of faces | No detect. | Incorrect | Correct

to be verified
1796

Number
detection

140 0

components results(%)

1280

original window 92.2

subsampling

1 pixel/4 on each row 320 1796 76 0 95.8

subsampling

1 pixel/8 on each row 160 1796 120 0 93.3

subsampling

1 pixel/16 on each row 80 1796 170 60 87.1

subsampling
1 pixel/8 on each row

1796 170 55 87.5

1 pixel/2 on each column 80

TABLE I
RESULTS VARIATION OF USED MEASURED DISTANCESWITH A SUBSAMPLING
1 PXEL/4 ON EACH Row

Number Number of faces | No detect. | Incorrect | Correct
components | to be verified detection | results(%)
Distance da(x) 320 1796 76 0 95.8
Distance d;(x) 320 1796 64 0 96.4
Distance do(x) 320 1796 32 0 98.2
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TABLE Il

RESULTS VARIATION OF RBF KERNEL ACTIVATION FUNCTIONS USING
MEASUREDDISTANCE d (z) WITH A SUBSAMPLING 1 PXEL/4 ON EACH Row

Number Number of faces | No detect. | Incorrect | Correct
components | to be verified detection | results(%)
Gaussian 320 1796 32 0 98.2
Heaviside 320 1796 118 0 93.4

Musaviet al.[23]. Initially, we haveP training points (vectors)
in an N-dimensional space and each training point is a cluster
as follows:

1)
2)
3)
4)

5)

6)

take any poink; and its associated widthy, (initially

o = 0);

find the nearest point; of the same class by using the
Euclidean distance;

compute the mean of these two points; we obtain a new
point with its associated width = (||ck, ¢i]|)/2 + ok;
compute the distande from the new mean to the nearest
point of all other classes;

if D > Ao, then accept the merge of and¢; and start
again from step 2; if the condition is not satisfied, reject
the merge and recover the two original points and their
widths, then restart from step 1);

repeat steps 1)-5) until all clusters of each class be used.

order to only obtain clusters according to identity, theneans A\ is the “clustering parameter” with< A < 3[23]. We use the
clustering algorithm was used in a supervised manner. ItvalueX = 2 in our case. Finally, we obtain the Gaussian centers
respectively applied to training feature vectors belonging t@ and the widths;(¢ = 1,...,I < P) ofthe hidden nodes. We
each person. This was inspired by an algorithm proposed tgn see (Fig. 2) the result after using this clustering algorithm for
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Fig. 6. Some images from the ORL database.

two classes in a two-dimensional (2-D) feature space. Note that TABLE IV

we obtain two nonlinear decision regions In fact. RBF neural RESULTS OFFACE RECOGNITION WITH ORL DATABASE: THESE RESULTS
) ' Have BEEN OBTAINED WITH THE DISTANCE d, (E) AND THE GAUSSIAN

networks can map spaces of any shape (nonlinear, convex, dlsACT|VAT|0N FUNCTION. HERE, NUMBER OF RECOGNIZED REPRESENTS

joint spaces). They use overlapping simple functions to cover  THE NUMBER OF FACES TO BE RECOGNIZED AND NUMBER OF
complex decision regions. INTRUDER INDICATES THE NUMBER OF FACES TO BEREJECTED

Estimate the weights between the hidden and output layer Nomber of B oo individual ) 3 5
. . . . umber O Xamples/individua. = = =
: Given that the Gaussian function centers and widths are com- P b Lkl R
puted fromP training vectors, the connection weights between Number of Total Example 40 | 120 | 200
the hidden and output layers can be calculated using the pseudo- Number of Test 14400 | 11200 | 8000
inverse matrix method. Number of Recognized 360 | 280 | 200
- . . I Number of Intrud 14040 | 10920 | 7800
C. Model Description: Face Tracking and Identity Verification fmer 7 e
. i i . Err-No-Recognized 68 47 21
Many face recognition algorithms require segmenting the
. Err-Confusion 1026 682 226
face from the background, and subsequently extracting fea-
tures such as eyes, nose, and mouth for further processing. Correct rate 924% | 93.5% | 96.9%
We propose an integrated automatic face localization and
identification model only using a classifier which responds TABLE V

to the question, “Does the input vector correspond or not the COMPARISON OFRECEGN'T'%\‘RFEATDES AGAINST OTHER METHODS
person to be verified?” The idea behind this is to simplify the SING ATABASE

model and_ reduce com_putation complexity in order to facilitate Methods p=1|p=3]|p=5
hardware implementations. -

Fig. 3 represents the structure of our model. The size of faces Simbal | 751% | 922% | 97.1%
in the scene varies from 4032 pixels to 135< 108 pixels Howell & Buxton | 84% | 91% | 95%
with four scales. The ratio between any two scales is fixed to Slimane & al. | 80% | 89% | 96%

1.5[19], [24]. We first subsample the original scene and extract

only the 40x 32 windows in the 4 subsampled images. Eac .
pre-processed 40 32 window (see Section llI-A) s then fed to&we component of the vector. So, the input vectors of RBF neural

i 7 network have 4 32 components. Second, we minimize the
RBF network as an input vector. After the training procedur?:]u ber of components in order to reduce the computing time.

the hidden nodes obtained are partially connected to the out realize a subsampling preprocessing: sample one pixel out

layer. In fact, the hidden nodes associated with one person 89 8 and 16 on each row of each window. We display some

?enclzéozgefet?jﬂég;h;a?;tggt ggggnrggrsezigﬁ?sg égi; C:izzbﬁggted images (see Fig. 5). Results of face tracking and identity
que per : b \Jefication are presented in Table I. Efficiency of the model is
more efficient [18]. The decision stage yields the presenc

o ) . . : cﬁéfined as follows:
position, identity and scale of the faces using the maxima i i L )
output values of the RBF neural network.  correct detection and identification: the face is correctly

located and identified,;
« no detection: a presented face is not detected;
« incorrect detection: a face is not correctly located.

In this section, we present results obtained by using severaperformance decreases quickly when the input vectors have
configurations with our model. Experiments are based @ components. In fact, incorrect detection regularly, appears
eightvideo sequences of 256 images. In all sequences, g we use only one pixel out of 16 on each row of a window.

scene size is 288 352 pixels. In the first four sequences (s€§ne pest results are obtained with one pixel out of four.
Fig. 5), there are either zero, one, two, or three different faces

presented. We have decided to verify two persons (Soph adVariation of Used Measured Distances
Seb) in these sequences. The 12 same training faces (see Fig.
are used for each person in order to compare the differezp
configurations of the model. 2

Ill. EXPERIMENTS AND RESULTS

ﬁ}evious results were obtained using the Euclidean distance
ia:) to compute the difference between an input veetand
the centers (kernelg)for each hidden node of the RBF neural

A. Variation of the Input Vector Lengths network,

In this section, we try to reduce the input vectors length of the d _ e 3

. e , , @)= [ Y (0 —cn) ®3)

RBF network in order to simplify hardware implementations. In
the preprocessing stage, we use first all pixels of eack 3P

window to compose the feature vectors. Each pixel represemtisereN is the number of components in an input vector.

1<n<N
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Fig. 7. Multiscaled face tracking and identity verification.

The distance; (x) is usually better when we use some noisy If one of the centers (hidden nodes) of the same class

images [25] produces an active response, the output unit linked to this
class gives a positive response. Comparative results are shown

di(z)= Y |on —cnl. (4)  inthe Table Ill. The number of no-detections has increased with

1<n<N the Heaviside function. The rate of correct results decreases

0, 0 i
Another distance considers only the components whose diffg%gm 98.2% 10 93.4%. In fact, the RBF neural network using

ence between,, andc, is greater than a threshald e HeaV|S|_de func_tlon restrains the capacity of generalization
by lack of interactions between centers of a same class: the

do(z) = Z 1 V|2 —ca| > 6. (5) Model only detects faces that are sufficiently close to training
LenenN examples.

T Among all configurations of the model, the best performance

Here, the threshold has been regulated to 10 [25]. Table lhas been obtained with 320 components of input vectors (sub-

shows that we have the best result with #yér) distance. sampling 1 pixel/4 on each row of a window), using measured

. o ) distancely(z) and the Gaussian activation function : the success

C. Variation of RBF Kernel Activation Functions rate is 98.2%. Almost all the faces are well detected, localized,
The Gaussian function is usually taken as the kernel activend identified in these four sequences of images (1024 scenes).
tion function Note that we have succeeded in regrouping 12 example training
2, o vectors for each person in six or eight centers (hidden nodes)

f(z) = exp=4®/7) (6) using the clustering algorithm.

whered(z) is the measured distance between the input vectoly  Face Recognition With ORL Database

and the centee. . . .
Another approach is the use of a simplified activation, for ex- We have adapted our model of face tracking and identity

ample the replacement of the Gaussian function in the RBF n}é?_rlflcatmn for an application of simple face recognition that

work by a Heaviside function leading to a simplified hardwar®® Ys€ fo_r ORL database of faces [2(.)]' This contains 40.0
implementation. The width of this function is the widthasso- grayscale images of 40 persons, each image has a resolution
ciated to the corresponding center of 92x 112. Some individuals have images taken at different

times. Variations allowed in the image included lighting, facial
Fz) = 1 dz) <o ) expressions and facial details. All the images were taken against
() = 0 d(z)>o0 a plain background, with tilt and rotation of up to°2dhd scale
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4 pixels blocks
averages

TABLE VI
RESULTS VARIATION OF FACE SCALES WITH A SUBSAMPLING 1
PIXEL/4 ON EACH Row

Nb.images Number Number of faces | No detect. | Incorrect | Correct
components | to be verified detection | results(%)
do(@)+
Gaussian 4 x 256 320 1492 39 (] 974
dy(@)+ L
Heaviside | 4 x 256 320 1492 121 0 91.9
c
c, A - ‘
L i : Fig. 9. Input vectors extraction.
L Pc{| ________ : : Connector
1 H CMOS JTAG FPGA
v E o609 000D aI M
Fig. 8. Image scanning with a slippery window. FPGA SRAM
variation of up to 10%. Fig. 6 displays some images from ORL
database. In order to use ORL data with the RBF network,
we subsampled each image in order to obtain a resolution of | s —
16 x 16 pixels [25] and the recognition was o_Ilre_ctI)_/ applied S ———
on these faces. The number of persons to verify is fixed at 40. RS 232

One, three, or f_|v_e arbitrarily chosen images of each |nd|V|dgE1|I 10, Architecture of the MEMEC board.
makeup the training examples (number of patterns for learnin
by individual p = 1, 3, 5), and the rest of the faces are used
to test the model. Several executions have been realized witt
each value op distributing arbitrarily the training set and the
test set. Then their means must be calculated and presente

in Table IV. Efficiency is defined as follows:

correct—correct recognition of a face;

nonrecognition—a face has not been recognized,;

confusion—a face is confused with an intruder.
For example, if we takg = 1, then each output unit (associated
to a class) would have to recognize nine faces of its class and tc
reject the % 39 = 351 faces corresponding to the other classes
(intruders). Withp = 5, we have a success rate of 97%, which o
is very close to or superior to the performances announced iff 11 Organization’s tasks on the MEMEC board.
the literature[9], [19], [25] (see Table V). Our system presents
the advantages of moderate computational requirements an| SRAM / CMOS Sensor Controller ‘
limited memory requirements. For example, generally when a
method usep = 5 training vectors by individual, our clustering
algorithm allows us to use only 2 or 3 centers by individual.

Input vectors
Extraction

Recognition

RBF
Neural
Network

Main Input vectors
Vectors Calculation
Storage ESM

FESM
E. Variation of Face Scales .
We have applied our algorithm to the last four video se-
quences in which we can observe a great variation of the sizt
of the faces and various lighting cor_1d|t|ons. The analysis vylth BBE Network
four scales allows us to track and identify faces whose size:
vary from 40x 32 to 135x 108 pixels in the original scene
(see Fig. 7). The results are shown in Table VI, and the succes
rates are, respectively, 97.4% using measured distén@e

(FIFO) Windows
Composition
FSM FSM

Vectors extraction Controller

Controller

Main Controller

Parallel Port Controller

and the Gaussian activation function, and 91.9% using distance
d,(z) and the Heaviside function. Fig. 12. Different controllers coded in VHDL [finite state machine (FSM)].
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TABLE VII

Loading 320
RESULTS OF THEFIRST IMPLEMENTATION ON THE MEMEC BOARD components into [~
sponse Response Responise Rasponse
the FIFO(first REF REF [r*"***=s| REF RBF
extraction | 15 centers | interfaces & controls | Total indowor the ot
column) : : ! :
Total Number of Slices 3072 3072 3072 3072 ' ! ; : H |
otal Number of Slice. 12807, 3207, & 322T, 13220y i, 98T i 320
Number of Slices used 57 435 335 827 7 n R .
Slices used rate 2% 14.1% 10.9% 27% )1_2_87;.;3’; ‘1_287_;; 12807, .
Total Number of Blocks RAM 16 16 16 16 Vo f
Number of Blocks RAM used 1 15 0 16 Loading 32 Loading 32 Loading 320
new new components into
Blocks RAM used rate 6% 94% 0% 100% components components the FIFO(first
into the into the window of the next
FIFO FIFO column)

Fig. 14. Computing time diagram for the first implementation.

Y

.—-){ Neuron 1

: TABLE IX
. Features Ry Logic of RESULTS REALIZATION ON THE MEMEC BOARD
> B > . Decision HJ>

\ Nb.components | Number of faces | No detect. | Incorrect Correct

: to be verified detection | results (%)

L Neuron K »
@ 320 1796 123 20 92
FPGA

well as the displacement scan step along the row and column

Fig. 13. Pipeline technique applied to each processing stage. determine the number of windows to be analydédhat we

calculate by
TABLE VI
NECESSARY OPERATION NUMBERS FOREACH STAGE OF FIRST L—1 C_C
IMPLEMENTATION: V' REPRESENTS THENUMBER OF WINDOWS TO BE V = {—f + 1J {710 + 1J (8)
ANALYZED, A; AND D CORRESPOND TO THENUMBERS OFADDITIONS Pe DI

AND DIVISIONS FORINPUT VECTORSEXTRACTION. A», S, AND O ARE
THE NUMBERS OFADDITIONS, SUBTRACTIONS AND COMPARISONS FOR
DISTANCE AND DECISION CALCULATION . THESE RESULTS HAVE BE
OBTAINED USING (8)—(16)

whereL is the number of rows in the imagé@,is the number of
columns,L; is the number of rows in a window;; the number
of its columnsp.. the scan step along the columns of the image,

v A D A 5 o andp; the scan step among the rows.
Tmage : 288 x 352 For I scales (scale = 1,..., F)
Window : 40 x 32
Scan steps : p; =2, p. =4 || 10143 | 1112832 | 370944 | 48534255 | 48838545 | 142002 E L. — L c. —C
Nb. hidden nodes =15 VE = Z <\‘87fe + 1J \‘67}('5 —|— 1J> (9)
— Pe. b1,
Scale =1 e=1

we use the same dimension of slippery window for each scale
Our aim is to realize face tracking and identity verificatioms well as the same displacement scan step. Weltak€'s, p;,

in real time on embedded systems. This is why we consider thedp. constant to each scale. The previous equation becomes
“mapping algorithm architecture” in order to optimize the im-
plementation. For example, we have reduced the complexity and £ L.—L c. —-C

ion Usi - : Ve=Y (| +1| |—=—L+1 (10)
the volume of calculation using the partial connection between VE .

. —1 Pc D1

the hidden layer and the output layer of RBF neural network.
With the clustering algorithm, we have succeeded in reducing
the number of hidden nodes. We have also evaluated our mogel
with the distancel; (z) and the Heaviside activation function - _ _
which are easier to realize hardware implementations and givén order to simplify the hardware implementations of our
an acceptable performance (close to 92% success rate). In $edel we reduce its complexity. Originally, input vectors of
tion IV, we analyze each stage of the complexity of our mod&BF network are obtained by subsampling one pixel out of

in order to prepare hardware implementations. four of each row in slippery windows of 49 32 pixels. Thus,
we have 320 components by vector. Here, we approximate

Input Vectors Extraction

IV. FROM ALGORITHM TO ARCHITECTURE COMPLEXITY OF
THE MODEL

A. Number of Windows to be Analyzed

this stage of subsampling using the average of four successive
pixels. On each row of each window, we compute the sum
of eight consecutive 4—pixel blocks (see Figs. 8 and 9). We
vertically scan the image to be analyzed so as to use the

We use a slippery window df ; x C'y dimension applied to redundancy of components of a vector with its following. We
aL x C image (see Fig. 8). The dimension of this window athus reduce the calculation linked to input vectors extraction.
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CMOS connector JTAG FPGA TABLE X
Leocooos] NECESSARY OPERATION NUMBERS FOREACH STAGE OF SECOND
IMPLEMENTATION: V' REPRESENTS THENUMBER OF WINDOWS TO BE
ANALYZED, A; AND D CORRESPOND TO THENUMBERS OF ADDITIONS
AND DIVISIONS FORINPUT VECTORSEXTRACTION. A5, S, AND O ARE
SRAM THE NUMBERS OFADDITIONS, SUBTRACTIONS AND COMPARISONS FOR
& ; DISTANCE AND DECISION CALCULATION. THESE RESULTS HAVE BE
OBTAINED USING (8)—(16)
FPGA FLASH
&= % EPROM v Ay D Ag S o)
Image : 72 x 352
Window : 8 x 32
Scan steps : p; =2, p. = 1 || 10465 | 278208 | 92736 | 9889425 | 10046400 | 146510
Nb. hidden nodes =15
Scale =1

RS 232 connector
a
@ Input vectors *4 Recognition
Extraction
e ZISC
Image
Acquisition
Image
Scanning

Fig. 16. Distribution’s tasks on the neurosight board.

1/0 connector

FPGA

k SRAM / CMOS Sensor Controller ‘

(b) Main Toput vectors
. . . . Z1sC Caleulation
Fig. 15. (a) Neurosight block diagram and (b) the board picture. ESM FsM FSM
Windows
Composition
The number of necessary additions for the calculation of the 1o
. X . . Vectors extraction Controller
vector linked to the first window of each column is 7ISC
Controller Main Controller

11)

Cy
11 = <? —1) x8x Ly. Parallel Port Controller
. . Fig. 17. Different controllers coded in VHDL for the second hardware
In order to form _each new vector from following _Wlndowqmpbmemation
of each column, it suffices to add to the preceding &
new components. In order to analyze an image with only one TABLE XI
scale, the number of necessary additions for the extraction oRESULTS OF THESECOND IMPLEMENTATION ON THE NEUROSIGHTBOARD
all vectors is

extraction | interfaces & Controls | Total
Cf C — Cf Total Number of Slices 768 768 768
A = <? —1) x8xLX o +1f. (12) Number of Slices used 57 235 202
Slices used rate 7.4% 30.6% 38%
In the same manner, we obtain the number of necessary divi- Total Number of Blocks RAM 8 8 8
sions for the extraction of all vectors Number of Blocks RAM used 1 0 1
Blocks RAM used rate 12.5% 0% 12.5%
c-C
D:8><L><{7f+1 . (13)
pi

culation demand®/ subtractions an&/ — 1 additions by center
[see (4)]. We have

C. Distance and Decision Calculation Ay =(N—1)x I xV

S=NxIxV

(14)
Equations (4) and (5) show that the complexity of the distance (15)
d1(z) is almost identical to that of the distanég(z). By using

the distancel, (z), we obtain performances slightly superior tavhere A, andS are respectively the number of necessary addi-
those of the distancé (z) (see Tables Il and VI), however con-tions and subtractions for an image linked to distance calcula-
trolling the threshold of this distance is difficult. Our group tion. IV corresponds to the number of components in each input

has therefore focused on the distadgér). This distance cal- vector and’ is the total number of hidden nodes. The output
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Loading 64 Loading these Loading 64 Loading 64
componenfs into c4 Response news Response Response Soslipohietin
the FIFO (first comp onents ZISC cotnp onents reereeerl  oree into ZISC
vrindow of the fist into ZISC into ZISC ! .
column) \ ' ' ' , .
| H I ‘ : I '
i 2567, , 647, E 54T, ‘: 647, E 54T, T ¥ :AEDQT u E 64T, ‘E
- vle  —— > Sty 28042008 P e : >
' ' ' i h .
] i i 1 ) '
BT e BT
: . i . ! o
Loading 8 Loading 8 Loading 64
news new components into
COMH Ottty components the FIFO (fust
into the into the windows of the
FIFO FIFO next column)
Fig. 18. Computing time diagram for the second implementation.
layer of the neural network usb@ary logic function “or” with TABLE XII

Heaviside activation function in hidden layer: each center com- RESULTS REALIZATION ON THE NEUROSIGHTBOARD

pares the calculated distance with the distance threshold dete
mined during the training step. We have used such comparison
as centers. So

Nb.components | Number of faces | No detect. | Incorrect Correct
to be verified detection | results (%)
64 1796 210 53 85.3

0=V x(I-1) (16)

represents the maximum number of comparisons to compare3f components. The used measured distance is the distance
responses of the RBF network contained in an image. d,(z). The activation function of each center is a Heaviside
function whose associated width delimits the influence area of

the center. Figs. 11 and 12 show the organization’s tasks and
the coding of these tasks using VHDL description for this first
Hardware implementations of the RBF approach have Bgrdware implementation. The original video image is stored in
realized for different applications, on either FPGA [26], 0in image memory bank with each pixel coded on a byte, the
neurochip [27]. Commercial RBF products include the IBMhput vector extraction consists of calculating averages of four
ZISC chip and the Nestor Ni 1000 chip [28]. Here, our aim isyccessive pixels on rows of the image. Each vector is fed to the
to elaborate in real time an efficient model of unconstrainegs hidden nodes of the RBF network which gives their respec-
face tracking and Identlty verification in arbitrary scenes. ThUﬁve responses in parallel. In Table VII, we present information
hardware implementations have been realized on three e§i-FPGA resources used. The input vectors extraction needs 57
bedded systems based on FPGA, ZISC chip, and DSP. Wgces” in order to define the image memory access and the
use industrial electronic systems: a MEMEC board [29], igteraction logic with centers. A memory block (FIFO) is nec-
general vision neurosight board [30], and a board based @sary to store input vectors to be tested. Each trained center
DSP TMS320c6x developed in our laboratory. We discuss fifigbeds one memory block and 29 slices for calculation (distance,
for each case the architecture of the system. Then results gégvation function, decision). This implementation uses 827
presented in terms of hardware resources used and processifiges” (27% of total resources). Note that the number of cen-
speed, and we compare the three implementations and prop@s is limited by the number of independent internal memory
the possible improvements. Note that these implementatigygcks.
are used for face tracking and identity verification with only 2) Processing SpeedThe complete implementation is real-
one scalgscale=1). A more complete future realization will jzed in parallel using the pipeline technique for each stage of the

V. HARDWARE IMPLEMENTATIONS

take into account different scales. processing (see Fig. 13). The images size is:2882 and con-
: o . tains 161x 63 = 10 143 windows of 40x 32 pixels each. The
A. First Realization: Implementation Based on FPGA displacement scan step along the rowjis= 2 and along the

1) Hardware ResourcesThis first implementation is real- column isp. = 4 [see (10)]. We realized, respectively, 49.65M
ized on aMEMEC industrial board [29] comprising a FPGAadditions, 48.8M subtractions, 370 944 divisions, and 142 002
Xilinx Spartanll-300[31], which contains 3072 “slices” (slice comparisons (see Table VIII).
= basic cell logic of FPGA) and 16 memory blocks of 512 bytes We determined the number of clock periods;, required
each (Fig. 10). We have implanted on the FPGA our model fifr each stage of the process in order to analyze one image (see
face tracking and identity verification with the VHDL descrip+ig. 14). The first windows of the first column neet807
tion using Xilinx ISE tool [31]. (320 componentx4T,y) to calculate 320 components of its

This implementation creates an RBF neural network withput vector and theB221, to obtain the decision of all cen-

15 hidden nodes. Each hidden node stores a center vectoten$. This first window is tested using027... We require only
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Fig. 19. Internal architecture of DSP TMS320 C6201.

32 new components (eight components by row of the window One ZISC [30] chip contains 78 RBF-link nodes with a max-
x four new rows) to form the following vector. This inputimal length of input vectorév = 64. The used measured dis-
vector extraction is defined while centers determine the rence and the activation function of each node are, respectively,
sponses of RBF network linked to the previous window. So, 8Be distancel;(z) and the Heaviside function. We adapt the
following windows of this column use 32262 = 199641, complexity of the model to this embedded system. At first, we
to be tested. This first column of the image is analyzed meduce the size of the original image by keeping only one line
21 5667, The first window of each next column requires onlyut four. This new image obtained (size ¥352) is then ana-
128071k in order to be processed. Sixty-two other windows df/zed with a slippery window of & 32. On each row of each
these columns neegR27,,; x 62 in order to be tested. This window, we compute averages of eight consecutive four pixels
implementation use8.42M T, for one image of 28& 352 blocks. Each window yields an input vector of 64 components
with one scale. The oscillator frequency on the board is 50 Mhz be analyzed by the ZISC chip. We haVe= 10465 win-
(Tax = 20 ns). The processing speed of this first implemendows (65 windows per row and 161 windows per column) to be
tation is 14 images per second with a success rate of 92% fested withL = 72, C' = 352, Ly = 8, Cy = 32, andp. = 1,
face tracking and identity verification (see Table IX). p = 2 (10). Necessary operation numbers to be realized, are
respectively, 10.16 M additions, 10.05 M subtractions, 92 736
visions, and 146 510 comparisons (see Table X).
We implement the input vectors extraction and all interfaces
1) Hardware ResourcesWe also made hardware imple-(memory access, ZISC access) on the FPGA Xilinx Spar-
mentation of our model using a commercial board linked tanll-50. Figs. 16 and 17 show the distribution’s tasks on the
pattern recognition applications. ThiGeneral Vision Neu- Neurosight board and the different levels of control coded in
rosightboard [30] contains a CMOS sensor (28852 pixels), VHDL.
an FPGA Xilinx Spartanll-50, two memory banks of 512KB Table XI presents information on hardware resources used for
each, as well as two specific ZISC chips [28] (see Fig. 15). this second implementation. The input vectors extraction imple-

B. Second Realization: Implementation Based on ZISC Chi;f1|
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Fig. 20. Block diagram and the board picture of the third embedded system.

mentation requires the same resources as those used withthieelast generation Texas Instruments DSP. They are available
MEMEC board. Here, we use only one ZISC chip (78 nodés fixed point (C62x and C64x) and floating point (C67x) ver-
maximum). sions, and CPU frequencies range from 150 MHz to 600 MHz.

2) Processing SpeedWWe have determined the number oft is possible to do eight operations per clock-cycle with these
clock periods, T, required for each stage of the process iBDSPs. The program fetches, dispatches instruction, and decodes
order to analyze one image (see Fig. 18) like for the first r@struction units can deliver up to eight 32-bit instructions to
alization. This second implementation ugezr M T, for one functional units every CPU clock cycle. The instruction pro-
288x 352 image with one scale. The oscillator frequency aressing occurs in each of the two data-paths (A and B), each of
the board is 33 MhzZ;, = 30 ns). The processing speed ofwhich contains four functional units, one multiplier and three
this second implementation is 25 images/s with a success ratanthmetic logic unit (ALU), and 16 32-bit register files (see
85.3% for face tracking and identity verification (see Table XII)Fig. 19).

) o . Our laboratory has developed a system based on a DSP

C. Third Realization: Implementation Based on DSP TMS320 C6201B (see Fig. 20). A CCD sensor sends 16-bit

1) Hardware ResourcesDSPs are specific processors desdata to the DSP via a complex programmable logic devices
tined for signal and image processing [32]. The C6x family IKCPLD). The DSP performs different processing and sends the
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Source data TABLE XiIll
I:I;IZE PARALLEL IMPLEMENTATION OF INPUT VECTORSEXTRACTION FOR
mask 00FFOOFF __—— ~__ 8 rightshift ith LooP STEP
| .
mask 00FFOOFF Step Instructions Units | Comment | Efficiency
-:-:’ Load data pointed by Al — A6(i+1) D
- high and left 1 /] if (A2<0) A2-1 — A2 S1 | loop counter 0.5
16 bits independant sum // if (A2>0) Jump loop S2 loop jump
high 16 bits word dot by of low 16 bits word dot by one A6(i) and 00ff00ff — A7(i) L
N N N e N N I 2 /] A6(1)>>8 — AS8(i) s 0.75
T Csm /] A7(-1)+A8(i-1) — A9(i-1) D
I:E]:]j 3 AS8(i) and 00ff00ff — AS8(i) L
2 right shift // A9(i-1)/4 — A5(i-1) S 05
\:l:l:lj if (B0!=0) A5(i-1) — save data pointed by A10 S
Result data 4 // A7(1)+A8(i) — A7(i) D 0.63
//if (B0!=0) B2-1 — B2 L2 line skip
Fig. 21. Sequential diagram of input vectors extraction. 5 high (A7(n)x 1) — A8(i+1) M
//if (B0!=0) 1 — B0 S2 0.38
6 low (A7(n)x 1) — AT7(i+1) M
resulting images to a PC via a universal serial bus (USB). W ///;ff(gz;oj)/:;g: ;21 LSZ :‘:: :tz oo
have chosen a ROM boot process from a flash memory fc:
the DSP (embedded board) [33]. Two SDRAM memories of
2M x 32 bits are available to store images between the different TABLE XIV
processings [34]_ IMPLEMENTATION RESULTSUSING TMS320 C6201
Thfe third hardvyare im.plemen'tation .of our mc_>de| for face Language p Assembler
tracking and identity verification is realized on this embedded :
system. The goal is to optimize in Assembler each stage of pro-_2Put vectors extraction 414 ms L8 ms
cessing using, in parallel, eight functional units of TMS320 DSP ___ Distance calculation 211 ms 144 ms
C6201. We give implementation details for the input vectors Gaussian function + Decision 67 ms
extraction stage as an example. The corresponding calculatiot Processing speed 3.5 images/second | 4.8 images/second

of this stage is represented by the followi6gfunction: For
(i = 04 < 128054+ = 4) dst[i/4] = (src[i] + srcli +
1] + srcfi + 2] + srci + 3])/4, wheredst and src are vec- TABLE XV

tors which contain, respectively, 1280 and 320 byte elements. SIMULATION RESULTSUSING TMS320 Co&

So, in order to minimize the memory access, we access data Language C Assembler

x 4 by Ioadlng_ a 32-bit word in each cyc_:le. The seque_nt|al dia- Input vectors extraction 12 ms 014 e

gram below (Fig. 21), shows all processing steps applied to dat - :

during this stage of input vectors extraction. Distance calculation 588 ms 13.3 ms
Details of optimized implementation in parallel on 8 func- _Gaussian function + Decision 22.2 ms

tional units are shown in the Table Xlll. The goal of the Processing speed 12.1 images/second | 28.6 images/second

optimized implantation is to use in parallel the maximum

number of DSP functional units. Note that the detail is given o

only for data-path A [33]. The same progress concerns the * ONly one scalgscale = 1) of initial image (288x 352

data-path B, and allows us to divide halve the processing time. PiX€ls) is implemented which requires the most calcula-

The Al... A9 and BO... B2 correspond to registers of the ~ UONS in comparison with the other scales;

DSP TMS320C6201. Italic lines correspond to loop control * Pi = 2, P = 4, and number of hidden nodes15;

and line skip instructions. The A2 register is used for the loop * US€d measured distance and the activation function of each

index and registers B0, B1, and B2 correspond to the flags that "0de are, respectively, the distankgz) and a Gaussian

control the line skip at the appropriate instant. The Al register function; the number of components of input vector=

points to source data and A10 points to result data. Efficiency 320; )

indicates number of units used divided by eight units of DSP.  * number of windows to be analyzédand the numbers of
2) Processing SpeedTables XIV and XV show, respec- add!t|ons_ and d|V|S|on_s for input vector; extractidn, D

tively, experimental implementation results obtained using &r€ identical that the first implementation; _

the DSP C6201 and simulation results obtained using the ® COITect rate of 98.2% is obtained for face tracking and

DSP C64x with the development tool, Code Composer Studio  'dentity verification.

(Texas Instruments). Theses results are in terms of processing_. . .

speed. We have applied a vertical window (482 pixels) D. " Discussion on Three Hardware Implementations

displacement to use the calculation redundancy for the inputTable XVI compares hardware complexity of three em-

vectors extraction stage. We give some parameters for thedded systems. Note that some compone@GRLD, Flash

following results: Memory, Connector JTAG.) can elaborate embedded systems,
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TABLE XVI is limited to a maximum of 256 components, because memory
HARDWARE COMPLEXITY COMPARISON OF THREE EMBEDDED SYSTEMS blocks of the FPGA possess a double access port (division of
FPGA ZISC DSP a block in two blocks of 256 bytes each). On the other hand,
Components GMOS sensor CMOS sensor CCD sensor we can double the processing speed on this system. Indeed,
SRAM SRAM SDRAM we can divide the inputs vectors in two half-vectors (the input
FPGA SpartanII-300 | FPGA SpartanII-50 vector here has 512 components in maximum) stocked eachina
271SC chips | DSP T™s32oce2oi8  half-block memory. To test an input vector, we input the distance
Image Memory Size 2Mbytes 1Mbytes 16Mbytes calculation of this vector and a node and this can be realized in
Interface Peripherals Parallel port Parallel port USB port parallel on each half-vector. We can also extract two half-vec-
Development Tool Xilinx ISE Xilinx ISE Code Composer Studio  tOrS 10 be tested in parallel because the image memory equally

possesses a double access port.
For the third implementation, thanks to the performances by

HARDWARE 1 oMPARISON the DSP TMS320 C6201, we optimized our model in its ideal
configuration and we have obtained a success rate of 98.2%.
FPGA ZISC DSP On the other hand the processing speed is inferior to the two
Components used || CMOS sensor | CMOS sensor | CCD sensor preceding implementations (4.8 images/s versus 14 images/s for
SRAM SRAM SDRAM the FPGA and 25 images/s for the ZISC). The processing speed
SpartanIL300 | SpartanlL.50 would increase to 28.6 images/s using the DSP TMS320 C64.
(FPGA) (FPGA)
1 ZISC chip | DSP C6201B VI]. CONCLUSION
Image Memory used 99K bytes 99Kbytes 99K bytes
Number of Slices used | 292 of 768 | 827 of 3072 We created a model that allows us to detect the presence of
Number of Blocks 16 of 16 L of 8 faces, to fol!ow them, and to verify their identities in video se-
RAM wsed guences using a RBF nt_—zural petwork. The model’s robustness
Processing Speed 14 tmngen/s | 25 tmagen/s | 45 imagen/s has been tested using eight video sequences arld the_ORL face
database. The best performance has been obtained with the fol-
Power consumption 967 mw 883 mw 684 mw lowing configuration: one subsampling of a pixel/4 for each row,
Number of operations the measured distandg(z) and the Gaussian activation func-
realized per second || 1.39 Gops | 0.53 Gops | 1.63 Gops tion. In fact, the subsampling preprocessing and the application
Performances 85.3% 92% 98.2% of thed(z) distance render the model less sensitive to face de-

tails and to the small differences between training examples and
, ) . test windows, thus, we have the better generalization.
however, they are not'usec'i N ou.r.hardware |mplemenf[at|ons|n relation to the lighting problem, we have tested the method
of face tracking and identity ve_rlflcatlon. The comparison roposed by Rowley [4] that consists of approximating the vari-
among results of three hardware implementations are show Wb of lighting inside a oval mask (face) by a linear function

Table XVII. in_order to balance brightness distribution of a window. This

Hardware resources used of the FPGA system are three tir|nn(1asroves the success rate in video sequences where there is a
those used of the ZISC system, in terms of slices (827 versiy g

292). On the other hand, only an internal memory block is usg(rjeat variation in lighting [35]. The important calculation re-
on tHe ZISC system wh'ile all blocks (16 memory blocks) a uired for this method would considerably reduce hardware im-

used on the FPGA system. Occupation rate in terms of slices %men_ta_tlon performan_ces. we eny|saged adding in t_he exam-
memory blocks are, respectively, 38% and 12.5% for the ZI s training set synthesis faces which are formed by simulating

system against 27% and 100% for the FPGA system. The gr different condition§ of lighting. Another. solutio_n based on
advantage of the ZISC is that it has 156 totally parallel hidddfié strategy of evaluative neural networks is to train the model
nodes while we have only 15 nodes on the FPGA system. With the last detected faces. o .

The ZISC processing speed is superior (25 images per seconti/é have demonstrated the feasibility of face tracking and
versus 14 images per second for the FPGA) while the perféqi_enuty verlflcat|o_n in real time using existing commercial
mance associated with this system is the weakest (success Pg@rds. We have implanted our model on three embedded sys-
of 85% against 92% for the FPGA system). The performané@ms. The success rate of face tracking and identity verification
difference is essentially linked to the fact that the input vectol® respectively, 92% (FPGA), 85% (ZISC), and 98.2% (DSP).
coded on the ZISC have a maximum length of 64 componenf&focessing speeds obtained for images of sizex2882 are,

Agreater input vectors length of the ZISC specific chip woultEspectively, 14 images/s, 25 images/s, and 4.8 images/s. The
allow to performance increase of face tracking and identity vefliscussion of these implementations allows us to propose
fication. On the other hand, the pippeline placement of registdr@ssible improvements for the architecture of each embedded
that stock the vector to be tested in each node would allow a fystem.
duction of the loading time frori4T,, to 87 (see Fig. 18).  Our model integrating 15 hidden nodes allows us to distin-
This is linked to the redundancy of two successive vectors cogiish two faces with a good performance-90% of success
ponent. For the FPGA system, three improvements are foresese). Extending this model to recognition of more fate$0)
able, we can double the number of nodes if input vectors lengthcessitates a calculation power superior to 10 Giga flops and,



YANG AND PAINDAVOINE: IMPLEMENTATION OF RBF NEURAL NETWORK ON EMBEDDED SYSTEMS 1175

thus, new architectures must be developed. They can be dgs8] L.H.Koh, S. Ranganath, and Y. V. Venkatesh, “An integrated automatic
veloped using more effective components, for exampRGA “1320589‘1?2970;“;08? recognition systerRattern Recogn.vol. 35, pp.
Virtexll (integrating many multipliers and memories) BSP (jlg] ' '

. ) - A.J.Howell and H. Buxton, “Learning identity with radial basis function
TMS320C64thus allowing a very rapid processing speed an networks,”Neurocomput.vol. 20, pp. 15-34, 1998.

better performance of face tracking and identity verification. [20] [Online]. Available: http://www.research.att.com/facedatabase.htm!
o h . | imol . £21] J. Moody and C. Darken, “Learning with localized receptive fields,” in
ur short-term perspective Is to complete implementation Proc. Connectionist Models Summer Sch&aln Mateo, CA, 1988.

using all four scales of images. A long term perspective is t@22] I. Park and I. W. Sandberg, “Universal approximation using radial basis

extract input vectors of RBF neural network using an artificial __ function networks,Neural Computat.vol. 3, pp. 246-257, 1991.
. loadi lculati f EPGA I:.[23] M. T. Musavialet al, “On the training of radial basis function classi-
retina, unloading a consequent calculation part o . FI- fiers,” Neural Networksvol. 5, pp. 595-603, 1992.

nally, we also would link to test our model on other applicationg24] E. Viennet, “Architecture Connexionniste Multimodulaire: Applicationa
of pattern recognition such as vehicle detection and tracking in, _"analyze de scéne,” Doctoral dissertation, Univ. de Paris Sud, 1993.

L i [25] T.Simetal, “Memory-based face recognition for visitor identification,”
real time. in Proc. 4th IEEE Int. Conf. Automatic Face and Gesture Recognition

Grenoble, France, Mar. 2000, pp. 26-30.
[26] A. Pérez-Uribe and E. Sanchez, “FPGA implementation of an adapt-
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