Star ldentification using Neural Networks

ThomasLindblad, Clark S. Lindsey
Department of Physics, Roya Institute of Technology
S-104 05 Stockholm, Sweden

Age Eide, Oystein Solberg and Andrew Bolseth
@stfold College

N-1757 Halden, Norway

Abstract: Star trackers provide spacecraft with the most precise estimate of their orientation,or attitude, with
respect to afixed celestial coordinate system. The star tracker camera views a patch of the celestial sphere and
attemptsto recognize the stars contained within. Then from the known star positionsit will cal cul ate the attitude.
A number of pattern recognition methods, each with various strengths and weaknesses, have been implemented
in star trackers. The most challenging situation involves onboard autonomous identification. The limits on
memory, power, weight, etc. place severe constraints on the processing available. We discuss here some neural
algorithmsand the kind of devicesinwhich it might beimplememented.

1. Introduction

Star trackersare devicesfor satellitesand space probes designed to determinewith high precision
theattitudeof thevehicle. Thestar tracker identifiesthe starsin acameraimage and by obtaining their
position from adatabase determinesthe pointing direction of the camera and thereby the attitude of the
spacecraft. |nmany spacecraft acoarse attitude estimateisfirst provided by asun sensor or earth horizon
detector [1]. Ideally, however, for the new generation of light-weight, low cost space craft alone star
tracker would providetheinitial attitude determination with little or noa-priori knowledge. Thestar
tracker iscomposed of optics, acharge-coupled device (CCD) detector, read-out €l ectronicsand some
digital processorswith pertinent auxiliary devices.

Theattitudeinformation may just be used for reference (coordinate mark) in connectionwith other
instrumentsor serveasapart of an attitude stabilising system. Controlling the attitudeimpliesthat thereis
a"desired situation”, and someforce or forcesare present in the system to change the attitude. Both
reactionsto the"disturbing forces" and a reference for the desired situation must be supplied to the
control system. The objective of the star tracker isto providethereference.

A typical star tracker [2] may haveafield of view (FoV) of 20 x 20 degrees, and havea512 pixel/
row 512 rowsMMP CCD. Thesengitivity istypically inarange of magnitudeM =+0.1to+4.5. These
characteristicsyieldsa> 50% probability of uptoten starsinthe FoV. The star catal oguein the onboard
compurter typicaly involvesafew thousands starswhose positionsare very accurately known and makeit
possibleto determinetheattitude to within few arcseconds.

Generally, spinning satelliteshave not used star trackersbecause of the streeking of the star images
Inthe exposuretime of the cameras. Instead, astar sensor measures crossing timesof astar over adlit
abovealight detector. The pattern of light pulses providesthe signaturefor agiven star constellation.
However, if processing and exposure speedswereincreased sufficiently, astar tracker could befeasible
for aspinning satellite, athough one may haveto give up accuracy inthe caseof largeangular velocities.
Sengitivity, precisionand thenumber of stars seen during asinglerevolution areessentia inputsto optimize
thesystem.

Thestar tracker processor isgenerally aconventional von Neumann device. However, thefact
that therecorded star intensity varies, noise pickup, etc. callsfor acertain desired slack or tolerancein
operation. Thisimpliesthat an artificial neural network aogorithm would be beneficial. Although neural



networksarehighly parald intheir architecturesthey must be executed sequentialy, and thusdowly, ona
von Neumann processor. Today, however, there are severa implementationsdirectly in hardware. These
devicesyield processing timesfrom afew hundred nanosecondsto afew microseconds and may thusbe
used as coprocessorsto the conventional CPU. Alternatively, the star tracker may beimplementedina
SIMD architecture. If star tracker NNW processing was thusimplemented in hardware onewould prob-
ably benefit bothin performance, e.g. perhapsfast enough to do star tracking on aspinning satellite, andin
weight.

2. Thestar tracker

Thestar tracker operatesin two modes: (1) theinital acquisition modewhereit must identify the
current star pattern without any prior information, such aswhen the spacecraft first reachesorbit or after a
temporary lossof control; (2) thetracking modewhereit merely updatesthe current attitude based onthe
known position from the previous measurement. Herewe examineonly thecaseof theinitial acquisition.

Star identification algorithms must usethe giveninvariants of astar constellation: angular dis-
tances between the star and its nearest stars and the opening angles between the vectorsfrom the star to
the nearest stars. The brightnessisnot atrueinvariant dueto both the natural variation of somestarsand
the noise and sensitivity variations of the CCD. Neverthel ess, some al gorithmstake advantage of the
general consistency of star brightness.

A common techniqueisthetriplets method that combinesthe unknown star with itstwo nearest
neighbors|[3,4]. For each triplet the two angular distances plusthe opening angle are compared to a
triplets database. The closest match istaken asthe star ID. Thisisrepeated for each star inthe FOV.
Findly, the positionsof the starsare compared for consistency (e.g. if ninestarsareidentified asbelonging
toasectioninthenorthern celestial hemisphereand oneisidentified in the south, throw out thelatter) and
the pointing angle of the cameraiscal culated.

Therearesevera difficultieswith thismethod. The distances and opening anglesare usualy
quantizedinacoarse integer format, say 8 or 10 hits. Because of noisefluctuations, the measured values
for agiven star triplet will vary somewhat. So the database must include caseswhere each featurevalue
variesby oneor twoincrements. Furthermore, oneor both of the nearest stars could be near the sengitivity
threshold and disappear from view. Or astar just bel ow the threshold may comeinto view and be closer
than thenominal closest stars. Taking into account al these possibilitesresultsin 100-200 entriesfor each
star inthetripletsfeature database. So agiven measured triplet usually matches several possible stars.
Only inthefinally consistency check with all the other starsin the FOV can avalid identification be
determined.

Fig. 1. Exampleof theintensity of astar observed with aCCD-camera. Theintensity isdistributed over severa pixels.



Another method placesthe star patterninto amatrix or grid with the unknown star at the center
[3]. Thestarsarerotated until the nearest star liesa ong the horizontal row and ontheright hand side. The
grid patternisthen compared to adatabase of smilar patterns. Thismethod isless sensitiveto position
fluctiationsbut doesrequire multiple database entriesfor al the cases of different nearest stars.

Theimage onthe CCD isdefocused so that the starlight isspread over severa pixels(figure 1).
Averaging the position then provides subpixel resolution. For aCCD of agiven number of elements, to
obtain greater accuracy, the FOV must be made smadller and the magnificationincreased to spread thelight
of agiven star over morepixels. Toinsurethat thereare enough starsinthesmaller FOV inevery possible
direction, the brightnessthreshol dsmust be madelower, thusincreasing the total mumber of starsinthe
database. Thedatabasesgrow quickly and nonlinearly. For deep space probesthat desire high precision,
autonomous star tracking, the database with the above methods can become prohibitively large dueto
brightnessfluctuations.

3. Theimplementations

Severa Neural Network (NNW) based al gorithms have been proposed for star tracking. For
example, Alvedaet al. [5] used adistribution of star brightnessvsdistancefrom thedesired star asinput
to aback-propagation network. Bardwell [6] used distances and cosine squared of theangular separa-
tionsasinputsto aKohonen feature map. Domeikaet al. [ 7] used brightnessand angular separation as
inputsto aHopfield network. However, these type of inputspatternshavesimilar problemsasthe meth-
odsmentioned in section 2. The brightness of the stars can vary naturally for some starsand noise can
move stars near the CCD threshold in and out of detection. Thismeansthe network must be capable of
recognising the star for al possible cases of missing and extrastars. Theangular separationsthentothe
nearest stars must beincluded for caseswhere one or both of those stars are not detected. The network
Szesmust then grow accordingly.

These neural network approaches, however, were not considered in the context of hardware
implementation. Today thereareasaveral commercial neural network chipsavailable. Theseincludethe
Zero Instruction Set Computer (Z1SC036) from IBM, which hasaRadia Basis Function (RBF) neura
network aswell asaK nearest neighbour (non neura net) algorithm implemented, and the CNAPS chip
from Adaptive Solutions. Thelatter isageneral SIMD architecture processor, particularly suitablefor
neura network implementations.

3.1 The RBF Neural Network Appraoch

One study involved asimplified task of identifying only the brightest star inthecell of agrid
covering the celestial sphere. Intheinvestigation described inthe diplomawork of ref. [13], the RCE or
ROI method of training RBF type networkswasused. Thisnetwork isimplementedinthelBM ZISC
chip discussed in section 5 and the ZI SC was used here to execute the network. Thetraining datawas
generated by: (i) finding the brightest star inacell, (ii) cal culating the distance between this star and the
threeclosest stars, (iii) cal culating the opening angles between vectorsto these stars from the brightest star
and (iv) transforming the datato the ZI SC input format. Thetraining vector consisted of two pairsof
distancesand theintensity of thetwo brightest of the nearest stars, followed by thethree anglesand the
Identification of the star.

Theresultsusing the IBM ZISC036 hardwarein RBF mode were not very rewarding when
tested with respect to noiseon distanceand intengity. Figure 2 includesfour casesof noisy data. It may be
concluded that the ZI SCO36isnot performing very well for any case. Itisparticularly sensitiveto noiseon
theintensities. Tests showed that while noise on the distance (5% asin group 1) yielded mediocre results,
evenworseresultswere obtained when noisewas added to theintensity values. SincetheRBF aswell as
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Figure 2. Success rate versus noisy distance/intensity data as obtained from the ZISC036 hardware. The
results for four noise classes with noise on distance and intensity: class 1 = 5% and 0%, 2 = 0% and 5%, 3
= 5% and 5% and 4 = 10% and 10%, respectively, The black and white bars corresponds to two different
ZISC configurations, the black bars are for no reduction of the NAIF and the white bars are for a 15%
reduction.

the ZI SC has been shown to be very sensitive to noisy datain connection with character recognition
[10,11], thisis perhapswhat wasto be expected. In the case of character recognition, it wasshown that
the Dynamic Decay Adjustment (DDA) algorithm (see section 5) wasmuch morenoiseresistant.

Several other exploratory testswith the ZI SC036 were performed. Generally speaking, fair
results could only be obtained when using alarge number of prototypes. Theresultspresentedinfig. 3are
obtained for the case when the L 1 norm (the Manhattan block distance asdiscussed in section 5) isused
when cal cul ating the distances between the vector and prototypes. Also, areduction of the so-called
NAIF of 15% wasused from thetrained values. NAIF standsfor Neuron Actua InfluenceField andis
the distancethreshold for fire/no firedecision. Inthe ZISC chip, thisisa16-bit register. It will first be set
equal to the MAF, the Maximum Influence Field (thereisalso aMinumum Influence Field, MIF, and
clearly MAF > MIF). Asmore templ ates are presented during thetraining, MAF will bereduced. The
Z1SC chip holdsthe accumul ated distances between the testvector and the prototypein another register
called DIST. During execution, the actua prototypewill fireif DIST < NAIF. What we havedonehere
istoartificialy reducethe“firing distance” with 15%. Theresultsobtained for seven different noise classes
showninfig. 3isnot very good. Closeto 100% can be obtained for up to 10% noise on the distance (class
1and2infig. 3), but for 5% noiseintheintensity (class3) thevaluedropswell below 50%. Thevalueis
still the samewhen 5% noiseis present on both distance and intensity. When the noiseis 10% on the
intensity, weonly get proper classificationsin onecaseout of ten (class6 and 7).

Other NNW star I D techniqueswere d so investigated. Wetried, for example, input patterns of
intensity ordered according to distancefor feed-forward networkstrained with back-propagation or
cascade correlation, and aso aradial basisfunction network [8]. Thisavoided the problemsof including
angular information, e.g. determining which starsto usefor the opening angles. However, theclassfications
wereneverthe essvery sengtiveto noiseon themagnitude and somewhat sengitiveto distancefluctuations.

3.2 The KNN Approach

SincethelBM ZISC036 al so can be operated in theK nearest neighbour mode, it wasreason-
abletoinvestigate thisapproach. TheZI SCO36 chipisvery easy toimplement in hardware both asastand
alonedevice(itisaso highly cascadeableif 36 processing el ementsare not enough) and asacoprocessor
to Intel and MotorolaCPUs.
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Figure 3. Noise tolerance of the ZI SC036 for seven different noise classes discussed in the text for the case
of a15% reduction of the NAIF.

Inafirst test of the KNN approach we used the same data as discribed above. Although, the
system because much more resistant to noise, therewas still aproblem with thelow degree of correctly
classfied stars. When 5% (10) noisewas added to theintensity, the successrate dropped from 99.5%to
62% (35%). Theeffect of noise on the distance valueswere even lessthaninthe RBF case. Thusthere
seemto beagenera problem with noiseonintensity, whilenoiseon distanceis OK.

We decided to avoid the use of the brightness and angles. I nstead we use a histogram of dis-
tancesto all starsaround the given star out to fixed angular radiusfromthe star to beidentified (cf. fig. 4).
If thehistogram of M binsissufficiently populated, thelossor gain of astar or twowill not affect the pattern
significantly. So thelower the brightnessthreshold, the more starsareincluded and the morerobust the
Input patternsto fluctuations. All starsin the FOV do not haveto beidentified. Thismeansthat the
database or NNW size can grow slowly sinceyou only need one pattern per star.

Then patternsfor theN bright starsbecomesanetwork of N prototype vectorsof dimension
M. For each star we used only non-noisy prototypes. The number of variationsof noise, extrastars, etc,
wastoo great to make a practical training set. Aninput pattern is presented to the network and each
prototype calculatesitsdistance

d=|(P-P)| 1)

fromthispattern and theresulting basisfunction value. Theinput isthen said to belong to theclasswith the
largest functional value. Alternatively, theinput pattern could be said to belong to the nearest prototype,
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Figure 4. The star pattern on the left shows starswithin 6° of the centre star that is to be identified. The diagram on
the right shows a histogram of the distances (in degrees) of the stars from the centre star.
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Figure 5. The ID efficiency versus noise on the star positions. The solid (black) curve represents the present
approach, while the shaded area represents results obtained with various “triangle” methods

I.e. thenearest neighbour method. Thisisnot atrue neural network method but it works naturally with
neural network hardware, especialy theradia basistypeasdiscussedin Section 5. (A probabilistic neura

network, where every input pattern becomes aprototype, could be used perhapsto give aprobability
output.)

4. Results

It has been shown above that the implemetation of astar tracker using aRBF type of neural
network architecturewill requireasystemwith many neuron. Specifically, one ZI1SC036 chipwith only 36
neuronswill not be enough, but rather 20-50 timesthat number isrequires. It isalso concluded that the
Z1SC036 on-chiplearning paradigm does not yield avery noiseresistant system. The ZISC036 is, how-
ever, cascadeable and yieldsresultsin 4.5usec. A larger ZI SC with severa hundred neuronsand anoise
resistant paradigm likethe DDA would be anideal situation. Alternatively, the DDA will haveto be
implementedinaSIMD architecturelikethe CNAPS aswill be discussed below and in appendix.

However, the ZISC can also be operated in a a non-neural mode, the KNN approach. As
presented in reference[9], wefound thismethod to provide high tolerance against flutuations in position
and brightness. Figure 5 and 6 show that the histogram method providesgood identification for large
position and brightnessjitter and falsgracefully at very largevalues. The network sizegrowsmoredowly
than thetri pletsmethod (no comparison was madeto the grid method but it can be expected to grow faster
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Figure 6. The ID efficiency versus noise on the star intensities. Here the triangle and match group algorithms
yielded worse values or roughly 80% at 0.5 and 55% at 1 pixel
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Figure 7. The|BM ZISC036 block diagram. Thetop part showsthe address (6-bit), control (9-bit) and 1/0 data (16-bit)
buses; totheright isshown the decision bus (4-bit) and the inter-ZI SC communication bus (21-bit). This circuit
can operate in RBF mode as well as KNN mode as discussed in the text.

aswell). Thespeed of computation wasd ower dueto the sequential processinginthesimulations. The
next section discusses possible solutionsfor thisproblem.

5. HardwareDesigns.

Thereare several waysto implement the NNW star identification techniquesin hardware. A
conventional von Neumann computer could be used stand-alone or with aneural network hardware
coprocessor. Asmentioned abovethe | BM Zero Instruction Set Computer, Z1SC036 (cf. fig. 7 for an
general overview of thearchitecture) isthefirst onein aseriesof building blockg 10]. It hasbeenimple-
mentedin afairly standard technology, 1w CMOSand isavailableinal144 pin surface mount package. It
isahighly cascadabl e chip, which meansthat systemswith morethan 36 neuronsare easily obtained by
adding more chips. Also, the softwareisindependent of whether or not you areusing oneor severa chips.
Each neuron hasaregister filefor prototype storage, aswell asaunit for evaluation of distances. The
upper limit of the number of categoriesisequal to 16 K. The ZISC hasaRadia Basis Function (RBF)
architectureand an on-chip learning a gorithm of the Region-of-Interest type. Inthe Z1SC0O36, the hidden
or prototype neurons use simple stepfunctions (other hardwareimplementationslikethe Ni 1000 uses
Gaussians). When anew vector is presented to the network, each RBF neuron cal cul atesthe distanced
between itsprototype vector and theinput vector. If theneuronfires, it will activatethe output or category
neuron to whichitisconnected. Inthe ZI SC architecture, each hidden neuronisonly connected to one
output neuron (category). In other RBF topologiesall neuronsin theselayers may beinterconnected.

Thedistances (d) can be calculated according totwonorms, L, orL_

L,=2Z |V.-P], 2
whereV, andP, representstheinput vector and the stored prototype elementsrespectively. The
summationrunsfrom 1to 64 and each component of thevector iscoded asan 8-bit number. Thisis
referredto astheManhattan block distanceand thedistance cal cul ationsare carried out usingal4-
bitaccumulator. Alternatively, wecan have

L, = max |V, - P|, (©)

with i=1, n, for an n element vector.
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Figure 8. The architecture of the CNAPS SIMD chip from Adaptive Solutions, Inc.

The ZISC036 can aso be used inK nearest neighbor (KNN) modeto carry out the star tracker
algorithm discussed above. It alowsthe distance between aninput vector and the stored prototypesto be
calculated, associated with the corresponding category, and delivered by ascending order of distance.
Distance eval uation isperformed the sameway asinthe RBF-casg, i.e. either corresponding to the poly-
hedral volumeinfluencefield, L, or thehyper-cubeinfluencefield,L .

If theZISCO36isoperated at 20 MHz, 64 components can befed and processedin 3.2us. The
evaluationisobtainedin 0.5us (or ten clock cycles) after thefeeding of thelast component, which corre-
spondsto aquarter of amillion evaluations per second on 22000 M IPSvon Neumann processor. The
long execution timeof the:a gorithm when run on avon Neumann computer reducesto amorereasonable
one, when using dedicated hardware.

Theimplementation of aneura star tracker in ZI SC hardware has been discussed by Solberg
and Bolseth [13]. They used an | SA board from IBM with 16 ZI SC036 chipsimplemented. They do get
significantly better resultsfor the ZISC-KNN than for the ZI SC-RBF, in particular for very noisy data. It
has been shown that the Dynamic Decay Adjustment alogorithm [14] ismuch more noiseresistant [15]
than the paradigmwhich resideson-chip the ZI SC. Hence, aZISC chipwiththisparadigmimplemented
would probably beavery nicealternative. Futureversionsof the ZISC will also probably contain larger
numbers of neurons so that fewer chipswould be needed to contain the star prototype patternsfor at least
2K stars.

The other approachisbased onaSIMD architecture (fig. 8). The CNAPS chip hasbeen used
toimplement severa neura network architectures. Thesearchitecturesincludethe RBF architectureusing
the Dynamic Decay Adjustment (DDA) alogorithm [14,15] for learning, in order to get abetter noise
tolerant behavious. Thisalgorithmisindeed smpleand very efficient. Like severa other paradigmsfor
RBF networks, the DDA uses Gaussian responsefunctions. Thisa gorithm resiststhegrowth in neurons,
i.e. prototypes, needed and thuswoul d reduce the number of hardware neuronsrequired.

We have tested this and other implementaions on a CNAPS PCI-board with atotal of 128
processors, and found that one generally gainsafactor of 20to 100 in speed ascompared to a90 MHz
Pentium PC. Thiswould again bring down the execution timefor the present alogoritm to areasonable
vaue

6. Summary

Unlikemany problems attacked with neural network methods, the star identification method
requiresavery large number of classes, around 2 to 3 thousand at aminimum, Sinceit requiresoneclass



per star. Usudly, wededl with afew classesand hundredsto thousands of training vectors. Generating that
many training vectors, e.g. from noise, for each star could in theory be doneaswell. A feedforward
network with so many outputswouldinvolveavery large network and bevery difficult totrain. A smple
RBF network trained with RBF would require severa thousand neurons. A more sophisticated algorithm
likethe DDA should amelioratethis” Curseof Dimensiondity”, but we havenot yet proved this. Sofor the
sake of smplicity and practicality, wetried the basi c nearest neighbor method, using only one prototype
per star, and it worked quitewell. If implemented in neural network type architecture, i.e. distributed
parallel processing elementswith each holding one prototype to compareto theinput, such amethod
would provideafast and robust solution for small FOV star trackers.

A number of possible hardwareimplementationswere discussed based on what iseither cur-
rently availableor ashort extrapol ation from available hardware. At thistimethere seemto betwo possi-
blewaysfor implementation, the IBM ZISC036 or the CNAPS. Whilethelatter performsat least 20
timesfaster than amodern pentium computer, theformer producesresultsin afew microseconds. Ineither
case, the star trackers could befast enough even for spinnng satellites.
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Appendix

The key to the Dynamic Decay Algorithm (DDA) isthe use of two thresholds denoted g, and

g such that for every pattern x of class ¢, we have

0 < R(X) and 6, > R’Jk(x),

pos

for at least one i intherange 1 <i<m_, foral k=candforall jintherange 1l <j<m. HereRRisthe
response function and are the number of prototypes of classc and k, respectively. Only when the activation
of proper classesare al below 6. » @New prototype will be added. The following pseudo code showswhat
the training for one new pattern x of class c looks like:

I findi: 1< i<m A R%x)=max{ RJC(x),lSj <m.}

2 if R(X) 2 6,

3 [ A+=10

4: else

S [ add new prototype p°m +1 with:

6 [ r'm+1 =X

7 [ o°m+1 =max{ c:kzcAl<jsm A Rm+1(r)<6,}

8 [ Am+1 =10

9 Vk#c, 1<j<m: ifRJk(x)> 6, ey ajkzmax{ G:R’Jk(x)< 6}

The choice of the two new parameters does not appear to be critical, but some default values can be used
(they need to be different or one ends up with the P-RCE like situation). In contrast to probabalistic neural
networks, we have here a situation where the hidden layer can include more training patterns. This callsfor
the use of aninitial weight referred to as A°.



