
1.  Introduction

Star trackers are devices for satellites and space probes designed to determine with high precision
the attitude of  the vehicle. The star tracker identifies the stars in a camera image and by obtaining their
position from a database determines the pointing direction of the camera  and thereby the attitude of the
spacecraft.  In many spacecraft a coarse attitude estimate is first provided by a sun sensor or earth horizon
detector [1]. Ideally, however,  for the new generation of light-weight, low cost space craft a lone star
tracker would provide the initial attitude determination with little or no a-priori knowledge.  The star
tracker is composed of optics, a charge-coupled device (CCD) detector, read-out electronics and some
digital processors with pertinent auxiliary devices.

The attitude information may just be used for reference (coordinate mark) in connection with other
instruments or serve as a part of an attitude stabilising system.  Controlling the attitude implies that there is
a "desired  situation",  and  some force or forces are present in the system to change the attitude. Both
reactions to the "disturbing  forces" and a  reference for the desired situation must be supplied to the
control system. The objective of the star tracker is to provide the reference.

A typical star tracker [2] may have a field of view (FoV) of 20 x 20 degrees, and have a 512 pixel/
row 512 rows MMP CCD. The sensitivity is typically in a range of magnitude M = +0.1 to + 4.5. These
characteristics yields a > 50% probability of up to ten stars in the FoV. The star catalogue in the onboard
computer typically involves a few thousands stars whose positions are very accurately known and make it
possible to determine the attitude to within few arcseconds.

Generally, spinning satellites have not used star trackers because of the streaking of the star images
in the exposure time of the cameras. Instead, a star sensor measures crossing times of a star over a slit
above a light detector. The pattern of light pulses provides the signature for a given star constellation.
However, if  processing and exposure speeds were increased sufficiently, a star tracker could be feasible
for a spinning satellite, although one may have to give up accuracy in the case of large angular velocities.
Sensitivity, precision and the number of stars seen during a single revolution are essential inputs to optimize
the system.

The star tracker processor is generally a conventional von Neumann device. However, the fact
that the recorded star intensity varies, noise pickup, etc. calls for a certain desired slack or tolerance in
operation. This implies that an artificial neural network alogorithm would be beneficial. Although neural
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Fig. 1. Example of  the intensity of a star observed with a CCD-camera. The intensity is distributed over several pixels.

networks are highly parallel in their architectures they must be executed sequentially, and thus slowly, on a
von Neumann  processor. Today, however, there are several implementations directly in hardware. These
devices yield processing times from a few hundred nanoseconds to a few microseconds and may thus be
used as coprocessors to the conventional CPU. Alternatively, the star tracker may be implemented in a
SIMD architecture. If star tracker NNW processing was thus implemented in hardware one would prob-
ably benefit both in performance, e.g. perhaps fast enough to do star tracking on a spinning satellite, and in
weight.

2. The star tracker

The star tracker operates in two modes: (1) the inital acquisition mode where it must identify the
current star pattern without any prior information, such as when the spacecraft first reaches orbit or after a
temporary loss of control;  (2) the tracking mode where it merely updates the current attitude based on the
known position from the previous measurement. Here we examine only the case of the initial acquisition.

Star identification algorithms must use the given invariants of a star constellation: angular dis-
tances between the star and its nearest stars and the opening angles between the vectors from the star to
the nearest stars. The brightness is not a true invariant due to both the natural variation of some stars and
the noise and sensitivity variations of the CCD. Nevertheless, some algorithms take advantage of the
general consistency of star brightness.

A common technique is the triplets method that combines the unknown star with its two nearest
neighbors [3,4]. For each triplet the two angular distances plus the opening angle are compared to a
triplets database. The closest match is taken as the star ID. This is repeated for each star in the FOV.
Finally, the positions of the stars are compared for consistency (e.g. if nine stars are identified as belonging
to a section in the northern celestial hemisphere and one is identified in the south, throw out the latter) and
the pointing angle of the camera is calculated.

There are several difficulties with this method. The distances and opening angles are usually
quantized in a coarse  integer format, say 8 or 10 bits. Because of noise fluctuations, the measured values
for a given star triplet will vary somewhat. So the database must include cases where each feature value
varies by one or two increments. Furthermore, one or both of the nearest stars could be near the sensitivity
threshold and disappear from view. Or a star just below the threshold may come into view and be closer
than the nominal closest stars. Taking into account all these possibilites results in 100-200 entries for each
star in the triplets feature database. So a given measured triplet usually matches several possible stars.
Only in the finally consistency check with all the other stars in the FOV can a valid identification be
determined.



Another method places the star pattern into a matrix or grid with the unknown star at the center
[3]. The stars are rotated until the nearest star lies along the horizontal row and on the right hand side. The
grid pattern is then compared to a database of similar patterns. This method is less sensitive to position
fluctiations but does require multiple database entries for all the cases of different nearest stars.

The image on the CCD is defocused so that the starlight is spread over several pixels (figure 1).
Averaging the position then provides subpixel resolution. For a CCD of a given number of elements, to
obtain greater accuracy, the FOV must be made smaller and the magnification increased to spread the light
of a given star over more pixels. To insure that there are enough stars in the smaller FOV in every possible
direction, the brightness thresholds must be made lower, thus increasing the total mumber of stars in the
database. The databases grow quickly and nonlinearly. For deep space probes that desire high precision,
autonomous star tracking, the database with the above methods can become prohibitively large due to
brightness fluctuations.

3.  The implementations

Several Neural Network (NNW) based algorithms have been proposed for star tracking.  For
example, Alveda et al. [5] used a distribution of star brightness vs distance from the desired star as input
to a back-propagation network.  Bardwell [6] used distances and cosine squared of the angular separa-
tions as inputs to a Kohonen feature map. Domeika et al. [7] used brightness and angular separation as
inputs to a Hopfield network. However, these type of inputs patterns have similar  problems as the meth-
ods mentioned in section 2. The brightness of the stars can vary naturally for some stars and noise  can
move stars near the CCD threshold in and out of detection. This means the network must be capable of
recognising the star for all possible cases of missing and extra stars. The angular separations then to the
nearest stars must be included for cases where one or both of those stars are not detected. The network
sizes must then grow accordingly.

These neural network approaches, however, were not considered in the context of hardware
implementation.  Today there are a several commercial neural network chips available. These include the
Zero Instruction Set Computer (ZISC036) from IBM, which has a Radial Basis Function (RBF) neural
network as well as a K nearest neighbour (non neural net) algorithm implemented, and the CNAPS chip
from Adaptive Solutions. The latter is a general SIMD architecture processor, particularly suitable for
neural network implementations.

3. 1  The RBF Neural Network Appraoch

One study involved a simplified task of identifying only the brightest star in the cell of a grid
covering the celestial sphere. In the investigation described in the diploma work of ref. [13], the RCE  or
ROI method of training RBF type networks was used.  This network is implemented in the IBM ZISC
chip discussed in section 5 and the ZISC was used here to execute the network. The training data was
generated by:  (i) finding the brightest star in a cell, (ii) calculating the distance between this star and the
three closest stars, (iii) calculating the opening angles between vectors to these stars  from the brightest star
and (iv) transforming the data to the ZISC  input format. The training vector  consisted of two  pairs of
distances and the intensity of the two brightest of the nearest stars, followed by the three angles and the
identification of the star.

The results using the IBM ZISC036 hardware in RBF mode were not very rewarding when
tested with respect to noise on distance and intensity. Figure 2 includes four cases of  noisy data. It may be
concluded that the ZISC036 is not performing very well for any case. It is particularly sensitive to noise on
the intensities. Tests showed that while noise on the distance (5% as in group 1) yielded mediocre  results,
even worse results were obtained when noise was added to the intensity values. Since the RBF as well  as



the ZISC has been shown to be very sensitive to noisy data in connection with character recognition
[10,11], this is perhaps what was to be expected. In the case of character recognition, it was shown  that
the Dynamic Decay Adjustment (DDA) algorithm  (see section 5) was much more noise resistant.

Several other exploratory tests with the ZISC036 were performed. Generally speaking, fair
results could only be obtained when using a large number of prototypes. The results presented in fig. 3 are
obtained for the case when the L1 norm (the Manhattan block distance as discussed in section 5) is used
when calculating the distances between the vector and prototypes. Also, a reduction of the so-called
NAIF of 15% was used from the trained values. NAIF stands for Neuron Actual Influence Field  and is
the distance threshold for fire/no fire decision. In the ZISC chip, this is a 16-bit register. It will first be set
equal to the MAF, the Maximum Influence Field (there is also a Minumum Influence Field, MIF, and
clearly MAF > MIF). As more templates are presented during the training,  MAF will be reduced.  The
ZISC chip holds the accumulated distances between the testvector and the prototype in another register
called DIST. During execution, the actual prototype will fire if  DIST <  NAIF. What we have done here
is to artificially reduce the “firing distance” with 15%. The results obtained for seven different noise classes
shown in fig. 3 is not very good. Close to 100% can be obtained for up to 10% noise on the distance (class
1 and 2 in fig. 3), but for 5% noise in the intensity (class 3) the value drops well below 50%. The value is
still the same when 5% noise is present on both distance and intensity. When the noise is 10% on the
intensity, we only get proper classifications in one case out of ten (class 6 and 7).

 Other NNW star ID techniques were also investigated. We tried, for example, input patterns of
intensity ordered according to distance for  feed-forward networks trained with back-propagation or
cascade correlation, and also a radial basis function network [8].  This avoided the problems of including
angular information, e.g. determining which stars to use for the opening angles. However, the classifications
were nevertheless very sensitive to noise on the magnitude and somewhat sensitive to distance fluctuations.

3.2 The KNN Approach

Since the IBM ZISC036 also can be operated in the K nearest neighbour mode, it was reason-
able to investigate this approach. The ZISC036 chip is very easy to implement in hardware both as a stand
alone device (it is also highly cascadeable if 36 processing elements are not enough) and as a coprocessor
to Intel and Motorola CPUs.

Figure 2.  Success rate versus noisy distance/intensity data as obtained from the ZISC036 hardware. The
results for four noise classes with noise on distance and intensity: class 1 = 5% and  0%, 2 = 0% and 5%, 3
= 5% and 5% and 4 = 10% and 10%, respectively, The black and white bars corresponds to two different
ZISC  configurations, the black bars are for no reduction of the NAIF and the white bars  are for  a 15%
reduction.



In a first test of the KNN approach we used the same data as discribed above. Although, the
system because much more resistant to noise, there was still a problem with the low degree of correctly
classified  stars. When 5% (10) noise was added to the intensity, the success rate dropped from 99.5% to
62% (35%). The effect of noise on the distance values were even less than in the RBF case. Thus there
seem to be a general problem with noise on intensity, while noise on  distance is  OK.

We decided to avoid the use of the brightness and angles. Instead we use a histogram of dis-
tances to all stars around the given star out to fixed angular radius from the star to be identified (c.f. fig. 4).
If the histogram of M bins is sufficiently populated, the loss or gain of a star or two will not affect the pattern
significantly. So the lower the brightness threshold, the more stars are included and the more robust the
input patterns to fluctuations. All stars in the FOV do not have to be identified.  This means that the
database or  NNW size can grow slowly since you only need one pattern per star.

Then patterns for the N  bright stars becomes a network of  N prototype vectors of dimension
M. For each star we used only non-noisy prototypes. The number of variations of noise, extra stars, etc,
was too great to make a practical training set.  An input pattern is presented to the network and each
prototype calculates its distance

d = |(P
i
- P

 0
)| (1)

from this pattern and the resulting basis function value. The input is then said to belong to the class with the
largest functional value. Alternatively, the input pattern could be said to belong to the nearest prototype,

Figure 4. The star pattern on the left shows stars within 6° of  the centre star that is to be identified. The diagram on
the right shows a histogram of the distances (in degrees) of the stars from the centre star.

Figure 3. Noise tolerance of the ZISC036 for seven different noise classes discussed in the text for the case
of a 15% reduction of the NAIF.



i.e. the nearest neighbour method. This is not a true neural network method but it works naturally with
neural network hardware, especially the radial basis type as discussed in Section 5. (A probabilistic neural
network, where every input pattern becomes a prototype, could be used perhaps to give a probability
output.)

4.  Results

It has been shown above that the implemetation of a star tracker using a RBF type of neural
network architecture will require a system with many neuron. Specifically, one ZISC036 chip with only 36
neurons will not be enough, but rather 20-50 times that number is requires. It is also concluded that the
ZISC036 on-chip learning paradigm does not yield a very noise resistant system. The ZISC036 is, how-
ever, cascadeable and yields results in 4.5 µsec. A larger ZISC with several hundred neurons and a noise
resistant paradigm like the DDA would be an ideal situation. Alternatively, the DDA will have to be
implemented in a SIMD architecture like the CNAPS as will be discussed below and in appendix.

However, the ZISC can also be operated in a a non-neural mode, the KNN approach. As
presented in reference [9], we found this method to provide high tolerance against flutuations  in position
and brightness.  Figure 5 and 6 show that the histogram method provides good identification for large
position and brightness jitter and falls gracefully at very large values. The network size grows more slowly
than the triplets method (no comparison was made to the grid method but it can be expected to grow faster

Figure 5. The ID efficiency versus noise on the star positions. The solid (black) curve represents the present
 approach, while the shaded area represents results obtained with various “triangle” methods

Figure 6. The ID efficiency versus noise on the star intensities. Here  the triangle and match group algorithms
yielded worse values or roughly 80% at 0.5 and 55% at 1 pixel



as well).  The speed of computation was slower due to the sequential processing in the simulations. The
next section discusses possible solutions for this problem.

5. Hardware Designs.

There are several ways to implement the NNW star identification techniques in hardware. A
conventional von Neumann computer could be used stand-alone or with a neural network hardware
coprocessor. As mentioned above the IBM Zero Instruction Set Computer, ZISC036  (cf. fig. 7 for an
general overview of the architecture) is the first one in a series of building blocks[10]. It has been imple-
mented in a fairly standard technology, 1 µ CMOS and is available in a 144 pin surface mount package. It
is a highly cascadable chip, which means that systems with more than 36 neurons are easily obtained by
adding more chips. Also, the software is independent of whether or not you are using one or several chips.
Each neuron has a register file for prototype storage, as well as a unit for evaluation of distances. The
upper limit of the number of categories is equal to 16 K. The ZISC has a Radial Basis Function (RBF)
architecture and an on-chip learning algorithm of the Region-of-Interest type. In the ZISC036, the hidden
or prototype neurons use simple stepfunctions  (other hardware implementations like the Ni 1000 uses
Gaussians). When a new vector is presented to the network, each RBF neuron calculates the distance d
between its prototype vector and the input vector. If  the neuron fires, it will activate the output or category
neuron to which it is connected. In the ZISC architecture, each hidden neuron is only connected to one
output neuron (category). In other RBF topologies all neurons in these layers may be interconnected.

The distances (d) can be calculated according to two norms, L1  or Lsup

L1 = Σ  |Vi - Pi|, (2)

where Vi   and Pi   represents the input vector and the stored prototype elements respectively. The
summation runs from 1 to 64 and each component of the vector is coded as an  8-bit number. This is
referred to as the Manhattan block distance and  the distance calculations are carried out using a 14-
bit accumulator. Alternatively, we can have

Lsup = max |Vi - Pi|, (3)

with  i = 1, n, for an n element vector.

Figure 7. The IBM ZISC036 block diagram. The top part shows the address (6-bit), control (9-bit) and I/O data (16-bit)
buses;   to the right is shown the decision bus (4-bit) and the inter-ZISC communication bus (21-bit). This circuit

can operate in RBF mode as well as KNN mode as discussed in the text.
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The ZISC036 can also be used in K nearest neighbor (KNN) mode to carry out the star tracker
algorithm discussed above. It allows the distance between an input vector and the stored prototypes to be
calculated, associated with the corresponding category, and delivered by ascending order of distance.
Distance evaluation is performed the same way as in the RBF-case, i.e. either corresponding to the poly-
hedral volume influence field, L

1
, or the hyper-cube influence field, L

sup
.

If  the ZISC036 is operated at 20 MHz, 64 components can be fed and processed in 3.2 µs. The
evaluation is obtained in 0.5 µs (or ten clock cycles) after the feeding of the last component, which corre-
sponds to a quarter of a million evaluations per second on a 2000 MIPS von Neumann processor. The
long execution time of the algorithm when run on a von Neumann computer reduces to a more reasonable
one, when using dedicated hardware.

The implementation of a neural star tracker in ZISC hardware has been discussed by Solberg
and Bolseth [13]. They used an ISA board from IBM with 16 ZISC036 chips implemented. They do get
significantly better results for the ZISC-KNN than for the ZISC-RBF, in particular for very noisy data. It
has been shown that the Dynamic Decay Adjustment alogorithm [14] is much more noise resistant [15]
than the paradigm which resides on-chip the ZISC. Hence,  a ZISC chip with this paradigm implemented
would probably be a very nice alternative. Future versions of the ZISC will also probably contain larger
numbers of neurons so that fewer chips would be needed to contain the star prototype patterns for at least
2K stars.

The other approach is based on a SIMD architecture (fig. 8). The CNAPS chip has been used
to implement several neural network architectures.  These architectures include the RBF architecture using
the Dynamic Decay Adjustment (DDA) alogorithm [14,15] for learning, in order to get a better noise
tolerant behavious. This algorithm is indeed simple and very efficient. Like several other paradigms for
RBF networks, the DDA uses Gaussian response functions. This algorithm resists the growth in neurons,
i.e. prototypes, needed and thus would reduce the number of hardware neurons required.

We have tested this and other implementaions on a CNAPS PCI-board with a total of 128
processors, and found that one generally gains a factor of 20 to 100 in speed as compared to a 90 MHz
Pentium PC. This would again bring down the execution time for the present alogoritm to a reasonable
value.

6.  Summary

Unlike many problems attacked with neural network methods, the star identification method
requires a very large number of classes, around 2 to 3 thousand at a minimum, since it requires one class

Figure 8. The architecture of the CNAPS SIMD chip from Adaptive Solutions, Inc.



per star. Usually, we deal with a few classes and hundreds to thousands of training vectors. Generating that
many training vectors, e.g. from noise, for each star could in theory be done as well. A feedforward
network with so many outputs would involve a very large network and be very difficult to train. A simple
RBF network trained with RBF would require several thousand neurons. A more sophisticated algorithm
like the DDA should ameliorate this “Curse of Dimensionality”, but we have not yet proved this. So for the
sake of simplicity and practicality, we tried the basic nearest neighbor method, using only one prototype
per star, and it worked quite well. If implemented in neural network type architecture, i.e. distributed
parallel processing elements with each holding one prototype to compare to the input, such a method
would provide a fast and robust solution for small FOV star trackers.

A number of possible hardware implementations were discussed based on what is either cur-
rently available or a short extrapolation from available hardware. At this time there seem to be two possi-
ble ways for implementation, the IBM ZISC036 or the CNAPS. While the latter performs at least 20
times faster than a modern pentium computer, the former produces results in a few microseconds. In either
case, the star trackers could be fast enough even for spinnng satellites.
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Appendix

The key to the Dynamic Decay Algorithm  (DDA) is the use of  two thresholds denoted q
pos

  and
q

neg 
,  such that for every pattern x  of class c, we have

 θ
pos

  ≤  R
i
c(x)   and   θ

neg   
 >  R

j
k(x),

for at least one i in the range 1 ≤ i ≤ m
c
 , for all  k ≠ c and for all j in the range 1 ≤ j ≤ m

k
. Here R is the

response function and  are the number of prototypes of class c and k , respectively. Only when the activation
of proper classes are all below θ

pos
  , a new prototype will be added. The following pseudo code shows what

the training for one new pattern x of class c looks like:

1: find i :  1 ≤  i ≤ m
c  

Λ  R
i
c(x) = max{ R

j
c(x), 1 ≤  j  ≤ m

c 
}

2: if  R
i
c(x) ≥ θ

pos

3: [  A
i
c+ = 1.0

4:   else

5: [  add new prototype pcm
c
+1  with:

6: [   rc
 
m

c
+1

     
 = x

7: [   σc m
c
+1       = max{ σ : k ≠ c Λ 1 ≤ j ≤ m

k
  Λ  Rc m

c
+1  (r

j
k) < θ

neg 
 }

8: [   Acm
c
+1     =  1.0

9: ∀ k ≠ c,   1 ≤ j ≤  m
k
 :    if R

j
k(x) > θ

neg
,    σ 

j 
k = max{ σ : R

j
k(x) < θ

neg 
}

 The choice of the two new parameters does not appear to be critical, but some default values can be used
(they need to be different or one ends up with the P-RCE like situation).  In contrast to probabalistic neural
networks, we have here a situation where the hidden layer can include more training patterns. This calls for
the use of an initial weight referred to as A

i
c .


