
Internet Search Engines based on Artificial Neural
Systems implemented in Hardware would enable a
Powerful and Flexible Content Based Research of

Professional and Scientific Documents

Luca Marchese1

1 Syn@ptics, Genova, 16151, Italy, luca.marchese@synaptics.org, www.synaptics.org

Abstract This document is a feasibility study on the development of a new generation of Internet Search Engines that
should enable the professional user to search documents by complex contexts instead of single words linked by logical
conditions. The method is well known in the literature and is, often, correlated to the WEB-SOM neural technology. This
paper approaches the problem with a new perspective that uses a hierarchical structure of the contexts and the latest neuro-
morphic VLSI chip technology. Furthermore, the proposed method is based on a user-friendly X3D (successor of the
Virtual Reality Modelling Language) GUI (Graphical User Interface). The user can search documents giving as input a
reference document that is used by the neural search engine in order to find similar documents.

Keywords Self Organizing Map, WEB-SOM, Internet Search Engine, Radial Basis Function, Neural VLSI, X3D,
Context-Based Data Base Navigation

1. Introduction

In this paper, we describe a feasibility study of the Internet
Search Engine based on context instead of a collection of
single words. The main difference is that the importance of
any single word builds the context. If the word is repeated
many times in a document, such a word assumes a higher
importance. The vector composed by the number of
repetitions of meaningful words constitutes the
“fingerprint” of the document. The standard way to search a
document is by typing some words that the desired
document must contain. The context-search modality is by
writing a small prototype of the document we are searching.
In such a way, the input could be a document and the output
is a list of documents strongly correlated with it.
There have been many studies on this argument, and they
were prevalently based on the SOM (Self Organizing Map)
developed by Teuvo Kohonen [15]. These studies are,
commonly, known as WEB-SOM.
The architecture of the proposed search engine is based on
the RBF (Radial Basis Function) neural network [16]. More
precisely, on its implementation in hardware on the
commercial neural chip CM1K [7].

1.1. The WEB-SOM Model

WEB-SOM means WEB Self-Organizing Maps and is an
algorithm that orders an information space [12][13][14].
The map places similar documents in closed spaces. The
order helps in finding related documents once any
interesting document is found. Fig.1 shows the basic
principles of the method and Fig.2 shows a typical map
obtained with such algorithm. The experiments made

around this algorithm, typically, produced bi-dimensional
maps containing “agglomerates” of similar documents.
Moving the cursor on such agglomerates the most used
words are displayed to the user in order to inform about the
context of these documents. There are many different
implementations of the WEB-SOM methodology that
produce various types of graphical outputs and are,
sometimes, organized in hierarchical structures. The main
characteristic of the WEB-SOM methodology is the self-
organization that characterizes the SOM neural network,
often cited as Kohonen Map.

Figure 1. The WEB-SOM methodology.

Figure 2. The typical output map of the WEB-SOM. Some words identify
the concentration of documents. A dark color indicates a more populated
area. Moving the cursor on the words, a list of documents can be displayed
in some other window.

2. The New Proposed Methodology

The methodology proposed in this paper is different from
the WEB-SOM approach in many aspects. The first is that it
uses a supervised neural network model (Radial Basis
Function). The second difference is that the hierarchical
structure of clusters organizes different levels of sensitivity
to the fingerprint of the documents. Another important
difference is the use of the latest commercially available
neuro-morphic VLSI technology for pattern recognition.
Such a technology should enable the servers of the Internet
Search Engine to manage multiple concurrent queries of
document’s fingerprint fuzzy comparisons with the
database. Furthermore, we propose an X3D (successor of
VRML) browser that enables the user to navigate in a 3D
world filled by a hierarchical structure of clusters of
documents. The experience is that of moving in a bookstore
with nested rooms. As we add new words, we contribute to
specialize the desired context and we, automatically, move
in a room or we enter in a more specialized sub-room.
Direct moving commands could help the navigation. If the
user has a reference document, in any format, he can put
directly such a document in the browser. The complex
fingerprint extracted shall be sent to the Internet Search
Engine that shall compare it with the entire database
responding directly with a list of similar documents.
This technology has been already presented, in 2000, by
L.Marchese at fourth “International Conference on
Cognitive and Neural Systems” [1], and at and at “First
International Zero Instruction Sensory Computing
Conference” [2]. The concept of “Pattern Recognition
Neural Server” was already presented by L.Marchese in
1999 at third “International Conference on Cognitive and
Neural Systems” [3] and ANNIE 2000 [4][5]. In the year
2000 the demand and requirements of the internet users
were not sophisticated as today, and this proposal arrived,
probably, to early. Furthermore, the commercial silicon
neuro-morphic technology was, at that time, limited to 36
neurons in a chip [6] while the current technology has 1000
neurons in a chip [7].

2.1. The Radial Basis Function Model and CM1K
Neuro-Morphic Chip

A radial basis function network (Fig.3) is a neural network
that uses radial basis functions as activation functions [16].
It is capable of representing complex nonlinear mappings
and is widely used for function approximation, time series
prediction, and control.

The CM1K chip is a hardware implementation of an RBF
neural network. The neurons are capable of ranking
similarities (L1 or LSUP distance as described in Fig.4)
between input vectors and the reference patterns they hold
in memory. The neurons report conflicting responses or
cases of uncertainty, as well as unknown responses or cases
of anomaly or novelty. The time necessary to obtain a
response is independent of the number of committed
neurons in the network.
The model generator built-in the CM1K chip makes it
possible to learn examples in real-time when they drift from
the knowledge residing in the current neurons. The
“novelty” examples can be stored in neurons assigned to a
different context to allow a supervised verification and to
learn at a later time.
The ability to assign the neurons to different contexts or
sub-networks allows building hierarchical or parallel
decision trees between sub-networks. This behavior leads to
advanced machine learning with uncertainty management
and hypothesis generation. Fig.5 and Fig.6 show the
learning process respectively, and the recognition process
flows in the CM1K chip. Fig.7 shows the board NeuroStack
that contains four CM1K chips for a total of 4096 neurons
and a stack of multiple boards. The user can stack these
boards together, and they self connect in daisy-chain: two
boards constitute an RBF neural network of 8192 neurons
and so on.

Figure.3 Radial Basis Function architecture.

Figure 4. L1 and LSUP distance calculation.

Figure 5. Learning process flow chart in CM1K.

Figure 6. Recognition process flow chart in CM1K.

Figure 7. A CM1K stackable board (NeuroStack) and a stack of multiple
boards in daisy-chain connection.A stack of multiple boards works like a
large neural network.

2.2. Dictionary building process

Many WEB-SOM papers describe this process that has the
purpose to build a dictionary of meaningful words by
analyzing a huge collection of documents. The meaningful
words are those that can be considered useful to
discriminate between contexts. In this paper, we briefly
analyze this process introducing some new algorithmic
proposals. We must note that the scope of the mentioned
studies on the WEB-SOM was quite limited. We think that
other methodologies could be more efficiently applied in
order to build a dictionary of meaningful words in a
comprehensive context like that of the entire Internet
contents. In this study, we use the CM1K in order to create
the dictionary containing all the meaningful words for
arguments discrimination. However, we want suggest that a
hash algorithm could efficiently perform this procedure in a
conventional computer. The CM1K can compare the current
word with all the stored words in parallel mode without the
use of hash algorithms and then increase the counter
associated with the firing neuron category. In order to
perform this operation, we must set MIF=0 and MAF=0

(MInimum influence Field and MAximum influence Field).
Infact we need a perfect match between the pattern and the
prototype: words must be equal and not similar. Therefore,
the L1 or LSUP distance must be null.
Two counters are associated to any neuron. The first counts
the number of times the word is present in all documents
(TCNT). The second counts the number of documents in
which the word has been found (DCNT). Finally,
elaborating this information, we can decide which words
are meaningful in order to discriminate between arguments.
A conventional computer program implements these
counters that are external to the CM1K. Fig.8 shows the
procedure flow of this process. When we have stored the
words on the CM1K(s) memory, we need to optimize the
dictionary, removing words not meaningful for arguments
discrimination. We propose two rules in order to perform
this operation:

Meaningful_Flag [Word [Class]] = True
if both the following conditions are true:

1. (Min_1 < TCNT[Class] < Max_1) = True
2. (Min_2 < DCNT[Class] < Max_2) = True

If (TCNT < Min_1) then the word is used too few times
to be associated with a context.
If (TCNT > Max_1) then word is probabilistically
evaluated as a common use word and thus, it has not
context discrimination value. Min_1 and Max_1 should
be empirically or statistically evaluated.
Min_2 = (tot_no_of_analyzed_docs / G) * (W/100).
The context granularity of the database is forced to G
(the maximum number of contexts/categories) . If the
number of documents containing the specified word is
lower than W% of the mean dimension of one
context/category, then the word is not valid for the
context/category discrimination.
Max_2 = (tot_no_of_analyzed_docs * C) / G. If the
number of documents having at least one element of
the specified word is matching more than C
contexts/categories, the word is considered not valid
for the context/category discrimination. TCNT is the
total counter of words, DCNT is the counter of
documents containing the word and Class is the class
associated with a word.

Figure 8. The dictionary building process

When the Boolean vector of meaningful words is complete,
it is possible to optimize the memory of the CM1K(s)
removing the not utilized prototypes (those prototypes
associated with a false flag). We can make it knowing that
CLASS = NEURON_INDEX because of CLASS is
assigned to a new committed neuron, during learning, as the
sequential index of the word. We need to build an algorithm
that shift down the memory of CM1K in any position is
needed (from a position to top) up of the required size
correcting the associated classes. We have to access in this
case the CM1K in SR mode (Save/Restore) in order to
disengage useless prototypes.
Now we can save the synaptic memory of the CM1K on a
file and reload it to recognize words from documents.
The number of neurons utilized (equal to the number of the
valid words) is the dimension of the "fingerprint" of
documents.
Documents clustered by source and clusters logically
ordered will result in such a degree of context linearity in
the dictionary. This property can be an important
improvement of the behavior conditions of the document
vector compression.

2.3. Documents fingerprint extraction and compression

We build a histogram of any dictionary’s word to extract
the document’s fingerprint. The document’s fingerprint is a
vector with the dimension of the dictionary. This process
will be quickly performed reading any word of the
document and identifying its byte-vector with an “Identify”
operation on the CM1K loaded with the synaptic memory
representing the dictionary. Fig.9 shows this procedure.
Alternatively we could use a Hash algorithm because the
identification of the word is, again a “perfect match”
comparison.

IN
0

IN
1

IN
2

IN
3

IN
4

IN
5

IN
6

IN
7

IN
8

… IN
M

OUT 0 0 1 0 0 0 1 0 0 1 … 0

OUT 1 1 0 0 0 0 1 1 0 0 … 0

OUT 2 0 0 1 0 1 0 0 1 0 … 0

OUT 3 1 0 0 0 1 0 0 0 1 … 0

… … … … … … … … … … … …

OUT N 0 1 0 1 0 0 0 0 0 … 1

Table 1. Random Bits Matrix for compression M to N. The component
<n> is computed as the sum of the components of the original vector
corresponding to bits=1. The number of bits=1 in each row is fixed.

IN
0

IN
1

IN
2

IN
3

IN
4

IN
5

IN
6

IN
7

IN
8

… IN
M

VECT 0 0 1 0 0 0 1 0 0 1 … 0

VECT 1 1 0 0 0 0 1 1 0 0 … 0

VECT 2 0 0 1 0 1 0 0 1 0 … 0

VECT 3 1 0 0 0 1 0 0 0 1 … 0

… … … … … … … … … … … …

VECT N 0 1 0 1 0 0 0 0 0 … 1

Table 2. Random Bits Matrix for compression M to 256. The components
of the original vector of size M are selected if the corresponding bit value
is 1. There are 256 bits=1 in each row. The table builds N vectors of 256
components.

Figure 9. The document fingerprint extraction process

We have an N-dimensional vector for any document of the
collection. N is the dimension of the dictionary and is too
large for any successive identification (N > 10000). We
require a compression of the vector that does not affect
similitude between couples of vectors. More precisely, the
compression must not affect the Euclidean distances
between any possible couple of vectors (in our case the
Euclidean distance is replaced by the L1 or LSUP).
In the WEB-SOM work (Kohonen), a compression based
on vertically normally distributed random bits matrix was
used in order to compress the dictionary vector (Table.1).
The formula used to compute the new reduced vector is:

0
[] [] [][]MV n V m Bit n m′ = ×∑ (1)

We want use the CM1K to perform the compression task.
We have 10000 components vectors and need to have
equivalent vectors of 256 components. The equivalence is
referred to the normalized distance between couples of
vectors: we do not use Euclidean distance but the L1 or
LSUP distance in order to have compatibility with the
CM1K. The final vector should be recognizable by the
CM1K (256 components byte wide comparison) in one
single recognition operation. The compression is performed
using a matrix with 256 randomly distributed bits "1" in
each row that builds a 256 components vector as a result of
the AND operation with the original vector (Table.2). The
CM1K(s), previously trained with fixed random patterns
recognizes the vector and the matching class is one
component of the new compressed vector. The training set
is composed of 256 patterns (256 components sized)
randomly generated. These patterns are sorted on the basis
of the L1 distance with a K-Nearest-Neighborhood
procedure and assigned to an incremental category number.
Furthermore, the reference patterns must have a minimal
distance (a defined threshold) from the nearest patterns
assigned to the lower and higher category number. We
repeat this step with different Boolean vectors for any
component of the new compressed vector (Fig.10). This
compression is more reliable than the simple Bits Matrix
compression: one of the reasons can be intuitive as
explained in Fig.11 and Fig.12. The new vectors conserve
the similitude property better than the random bits matrix
processed vectors. This property is true if the documents
contain a quite high number of words of the dictionary. The
system behaves better working on the database of large
documents that little ones, as well as any other text-analysis
algorithm. The test to verify the similitude-safe property is
following explained. We build a database of pseudo-random

vectors composed of 10000 components and chose a
reference vector. The reference vector is compared using a
normal program of L1 distance computation with all the
other vectors. We insert in the list all the vectors having
normalized distance < D_MAX (2). This process is very
long and could be performed quickly using an appropriate
algorithm on the CM1K. However, we use a simple
program on a conventional computer, because it is used
only one time for a test.

Figure 10a. Random-bits-matrix compression with L1 or LSUP distance
recognition based on random reference prototypes . The reference
prototypes are ordered by L1 distance (K-nearest-Neighborhood) and
assigned to an incremental category number (Fig.10b).

Figure 10b. The flow-chart of the procedure used to sort the reference
prototypes by L1 distance. Any randomly generated vector is compared
with all the previous vectors and they are sorted by L1 distance with the
KNN algorithm (K-Nearest-Neighborhood).

Figure 11. The standard random-bit-matrix compression methodology:
swapping couples of selected components in the original vector, the single
component of the compressed vector does not change.

Figure 12. In the proposed random-bits-matrix compression followed by
L1or LSUP distance recognition swapping couples of selected components
in the original vector, the single component of the compressed vector
changes as required.

We repeat the process with the equivalent 256 components
compressed vectors. Then we insert in the second list the
vectors having normalized distance < D_MAX. The
equivalence of the two lists should mean a 100% similitude
property safe: a value over 70% is acceptable. We repeat
the test with many target vectors. The standard deviation (3)
of the results obtained should be very limited in order to
consider this test reliable. At the end of this process, the
average of the results should be considered.

1_ /
_ 1_

1_ 1_
_

D L d N
D normalized L dist
L d L dist
N vector size

=
=

=
=

 (2)

()

devstnd
resultmean

resultsamplex
samplesofnumberN

N
xN

n

_
_

_
__

1

=
=
=
=

−
= ∑ =

σ
µ

µ
σ

 (3)

 2.3.1 Examining the output of this process

The output of this process is a list of records composed of
[URL][VECTOR][MUW] related to the examined
documents. The URL is Uniform Resource Locator for the
specified document while VECTOR and MUW are
respectively the fingerprints and the most used word of the
document (Table.3).

 URL VECTOR MUW
http://domainX.dir1.docZ.html [230][234][200]...[010] transistor
http://domainY.dir1.docW.html [240][134][002]...[030] optical
http://domainZ.dir1.docY.html [130][034][005]...[050] car
http://domainZ.dir2.docD.html [030][114][135]...[120] network

..........
Table 3. Association of URL, fingerprint and Most Used Word

2.4. Hierarchical clustering and 3D mapping

As we have explained above, the system is based on a
hierarchical structure of clusters or “containers” that we can
see as “nested” rooms of a bookstore. The level <0> is the
most detailed level or, using the bookstore’s simile, is the
room where you can find, finally, the books you are
searching. The hierarchy replicates upper levels a certain
number of times (the granularity of the hierarchy). These
levels are here, generically, indicated as level <n>.

2.4.1. Level <0> clustering

When we have a table with records
<URL><VECTOR><MUW> we must put them into
clusters basing this operation on the distances between their
vectors that we have called "document fingerprint."
We want perform this process as fast as possible using the
recognition of the Radial Basis Function hardware
implementation. The choice of CM1K neural chip is related
to the easy to understand behavior and programming
interface and mainly for its "unlimited" expandability at no
cost of performance.
The process of clustering (Fig.13) is a hybrid situation
where some aspects of supervised and unsupervised
learning behave together. We must perform the learning
process without knowing a-priori classes associated with
patterns, but, at the same time, we need to associate a class
to any cluster. The choice is to associate an incremental
number linked with the commitment of a new prototype
neuron in the Radial Basis Function neural network. We
select MAF (Maximum Influence Field)[7] following the
relation: MAF = f (DB_SIZE, NN_MAX_SIZE);

DB_SIZE is the size of the database and NN_MAX_SIZE
is the maximum number of neurons available.When the
input pattern does not match within the influence field of
any other existing prototype, the learning process commits a
new neuron. This new neuron has MAF as influence field.
The new prototype connects with a new cluster.
The learning process never reduces the influence field of a
prototype: the category-mismatch condition cannot happen
[7] because any new category is a sequential number.
When the CM1K learns a pattern, we memorize the URL
(Uniform Resource Locator) of the document and its most
used word (MUW) in a database. The key of such a
database is simply the number of the cluster. The relation is
"one to many" because any cluster contains many URLs
with the associated MUW (Table.4 and Table.5).

CLUSTER_0 VECTOR URL MUW

23403

[120]
[030]

...
[240]

http://domainX.dirX.docX.html neural
... ...

http://domainX.dirX.docX.html Kohonen
Table 4. Example of records for the key CLUSTER = 23403 at the
level<0>

CLUSTER_0 VECTOR URL MUW
… … … …

23403

[120]
[030]

...
[240]

http://domainX/dirX/docX.html neural
... ...

http://domainX.dirX.docX.html Kohonen
… … … …

30000

[220]
[130]

...
[140]

http://domainX.dirX.docX.html RBF

… …

http://domainX.dirX.docX.html KNN

… … … …

Table 5. The table with more clusters at the level<0>. A cluster contains
many URLs and the associated MUWs.

Figure 13. Clustering process from documents to level<0> clusters

2.4.2. Level <n> clustering

The upper clustering levels supply a hierarchical structure
for the navigation of the database. The number of clustering
levels is a function of the database dimension and the
degree of roughness that best fits a meaningful navigation.
Starting from n=1, any cluster of Level<n> does not contain
URLs but the Level<(n-1)> clusters. An MUWs list
connects with any Level<(n-1)> cluster, and a number
identifies any cluster (Table.6 and Table.7). In order to
enable a 3D navigation, we need to add at this record some
information that represents the x-y-z position of the cluster
in 3D space. We perform this operation with a recognition
operation on the vector divided into three elements, using
CM1K(s) trained with predefined pseudo-random patterns
(Fig.14 and Fig.15):

X = CLASS(k = 0 - m STEP 3) { V[k] }
Y = CLASS(k = 1 - m STEP 3) { V[k] }
Z = CLASS(k = 2 - m STEP 3) { V[k] }

Figure 14. Clustering process from level <n-1> to level <n> clusters

Figure 15. The computation process of coordinates. We split the
fingerprint into three parts, and the CM1K recognizes these parts
separately. We use a database of fixed random patterns as neural memory
of the CM1K. We use the class (range 0-16000) as a coordinate.

2.5. From clusters to X3D

The process described here is required in order to obtain a
full X3D hierarchical description of the database space.
X3D (successor of VRML) is featured to describe tri-
dimensional spaces and environments containing three-
dimensional objects. X3D files are files that can be
interpreted by X3D browsers. An X3D browser enables the
navigation of the spaces described by X3D files. Our
objects are very simple geometrical shapes because they
must represent the clusters as “containers” or “rooms”.
Fig.16 shows how the data contained in cluster tables are
used to build X3D files.
Fig.17 shows the process that creates a hierarchical
structure of X3D files starting from cluster tables.

CLUSTER
 n VECTOR CLUSTER

 n-1 MUW-LIST X Y Z

2366

[120]
[030]

…
[240]

23403 WORD1, ...n 2404 1230 240

... WORD1, ...n

32240 WORD1, ...n 2400 1040 200

Table 6. Example of records for the key CLUSTER = 2366 at the level<n>

 CLUSTER
 n

VECTOR CLUSTER
 n-1 MUW-LIST X Y Z

… … … … … … …

2366

[120]
[030]

…
[240]

1 WORD1, ...n 2404 1230 240

... WORD1, ...n

32240 WORD1, ...n 2400 1040 200

… … … … … … …

3000

[230]
[200]

…
[100]

1 WORD1, ...n 1600 200 500

… WORD1, ...n … … …

2000 WORD1, ...n 340 2340 1300

… … … … … … …

Table 7. The table with more clusters at level<n>. The sub-clusters of
level<n-1> have their MUW-LISTs and coordinates associated.

2.6. X3D Data Base Navigation

The first access to the database is the highest level X3D file
in a hierarchical structure. Moving in this space, we can see
many objects representing lower level clusters positioned
dependently of their associated vector.
Thus, we can see zones more populated of objects than
others.
The user can walk, fly, translate, tilt, yaw, pitch and roll
using keys on the browser or a specialized joystick. When
the cursor is on an object, the browser shows, in another
frame, the list of words associated with the cluster that is
represented by this object. The X3D file contains this list of
words. Looking at these words, we can understand the
contents of the cluster and decide if it is interesting for our
research. In this case we can click on the object obtaining
the download and visualization of the X3D file associated.
This type of navigation looks more enjoyable than useful
and must be enhanced enabling the user to move in this
world inputting complex context information.

2.7. Context-based navigation

We need to enable the user to move in the 3D space not
only making direct X3D movements, but also putting
context information. There are two possible scenarios of
this behavior. In the first, the user has a “reference
document” and wants find similar documents. In this case,
the clustering processes explained in Figs.13, and 14 can
manage the navigation. The user can upload the “reference
document” into the browser, and its fingerprint is sent to the
Internet Search Engine. The Internet Search Engine
compares the fingerprint with the database using a Pattern
Recognition Neural Server based on CM1K boards
(Fig.19). The user is then automatically transported in the
3D world in the sub-space addressed by the fingerprint of
the “reference document”. The user could, optionally, select
if he wants confirm manually any sub-cluster passage. If the
fingerprint of the “reference document” is enough detailed,
the user could be directly transported to the deepest
bookstore room containing the “books”. If the fingerprint is
not enough detailed or it does not fall in the “influence
field” of any deepest “room”, the user could be stopped at
any clustering level in any x-y-z position. In such a case,
the user should navigate from that point with direct 3D
movements helped by the MUW-lists associated to clusters
that are visible in the window of the browser when left-
clicking on the cluster.

In the second scenario, the user does not have a reference
document and needs to build incrementally a context by
typing words in the window. In this second case, a real
fingerprint cannot be constructed reliably because the user
should be asked to input too many words and indicate the
“weights” of them for the context. In order to manage a
navigation driven by small reference context, we have
proposed the clustering process of Fig.17. Comparing such
a process with that of Fig.14, the reader can note that we
have added the management of a new table “word-to-
coordinates”. Fig.18 explains the navigation process. Any
time the user inputs a new word the server calculates the
contribution of such a word to build a new position and
sends these coordinates to the client browser. The server
and the client share the computation of the new position.
The server sends the coordinates associated to that word in
a specific cluster. The server finds the coordinates in the
corresponding table “word-to-coordinates”. The client (the
browser) averages these coordinates with the current
coordinates in order to build the final position. The
clustering process of Fig.17 builds a word-to-coordinates
table for any cluster at any clustering level. This navigation
process does not require the pattern recognition capability
of the Neural Server, but it is not exactly the most important
target of this feasibility study. We believe that the real
revolution in the research of scientific and professional
documents is that one performed uploading the “reference
document” as shown in Fig.19. The browser should accept
any document format (Txt, RTF, Pdf, Word, PostScript),
and the server should extract the fingerprint. Then, the
server asks for a pattern recognition service to the CM1K
server and forwards the results (coordinates or cluster
number) to the client (browser). In the next chapter, we
propose an alternative simplified Internet Search Engine
based on multiple dictionaries associated with specific
disciplines.

Figure 16. CLUSTER_n associates with an X3D file
and contains the CLUSTER_(n-1) - object inside X3D file. The server
dynamically builds the X3D file from the table. The x, y, z are the
coordinates of the object. The MUW-LIST associated to the object is
displayed by the browser when the cursor is on the object.

Figure 18. The Internet X3D browser queries the Internet Search Engine
with some words that build a small context system.

Figure 17. Clustering process from level n-1 to level n clusters with the
management of queries containing a small number of words (small
context) instead of a real reference document.

Figure 19. The Internet X3D browser queries the Internet Search Engine with reference documents. The “CONTEXT” sent by the HTTP server to the
CM1K server is not referred to the document but is an internal parameter of the CM1K that selects the appropriate synaptic memory for the hierarchy level
and the current cluster.

3. Fingerprint-based on Specialized Dictionaries

There is an alternative simpler way to build context based
Internet Search Engines. Instead of considering context in a
continuous space we could decide to discretize this space
considering a large number of specialized dictionaries
dedicated to specific disciplines from economy to science
and technology. A hierarchy with different levels of
specialization organizes the system. Experts in any specific
discipline could build specialized dictionaries. A “one to
many” database relation should link any specific word to
dictionaries at different levels of the hierarchy. The
fingerprint of a document is the number of words linked to
any specific dictionary. The fingerprint’s size is the number
of dictionaries for the current level of the hierarchy. The
server uses the database of relations word-dictionary in
order to build the fingerprint of the document. The Internet
Search Engine, as usually, scans the net contents and builds
the fingerprints of the documents updating the database
based on Table 3, Table 4 and Table 6. In our proposal,

we fix the number of dictionaries for any level of the
hierarchy to 256 in order to be compatible with the
maximum dimension of the CM1K vector. The fingerprint
of a document is a 256 elements vector that can be
computed counting the document’s words belonging to the
256 specialized vocabularies. From the model described in
the first part of this document, only the fingerprint
extraction modality is different, and we could consider valid
any other process described. The advantage of this approach
is the higher reliability of the fingerprint. The drawback is
the need to fix, a priori, a comprehensive hierarchical
structure of the global knowledge available on the Internet.
Indeed the origin of a new discipline would not be tracked
by the system. On the contrary, this new discipline would
be tracked by the system based on the global dictionary’s
fingerprint, provided that this discipline does not introduce
too many neologisms. Fig.21 shows the fingerprint
extraction process based on specialized dictionaries. In
order to perform this process with the CM1K
(MIF=MAF=0), a previous learning process is required
(Fig.20).

Figure 20. The process related to the association of words to multiple
dictionaries

Figure 21. The fingerprint extraction process from a document in a
multiple dictionaries framework.

4. Conclusions

In this paper, we have presented a feasibility study for the
realization of a new generation of Internet Search Engines.
These engines are more suitable for professional customers
that need to search documents by complex contextual
information instead of simple collections of words linked by
logical conditions. In this study, we have used the latest
neuro-morphic VLSI pattern recognition technology and the
most sophisticated Internet navigation languages. The use
of pattern recognition specialized chips enables the real-
time management of multiple clients queries on a database
of document fingerprints. The server must analyze a huge
quantity of fingerprints in a fuzzy way that is not suitable
for conventional processors.
We believe that this is the right time for a new generation of
Internet Search Engines that could search images and
documents following a fuzzy “brain-like” philosophy
instead of an Aristotelian or Boolean method.

ACKNOWLEDGEMENT
We want to thank Anne Menendez and Guy Paillet of
General-Vision for the technical support on the CM1K chip
technology and the suggestions and feedbacks on this
feasibility study.

REFERENCES
- Boston University
[1] L.Marchese, “Distributed Database content based navigation

and Internet search engines powered by neural VLSI”. -
"Fourth International Conference on Cognitive and Neural
Systems"- (27/05/2000) - Department of Cognitive and
Neural Systems – Boston University S

[2] L.Marchese, “Neural VLSI for Internet and
telecommunications technology” - First International Zero
Instruction Sensory Computing Conference (LeCorum
Montpellier) (27/07/2000)

[3] L.Marchese, “Neuromorphic VLSI server” - "Third
International Conference on Cognitive and Neural Systems"
(27/05/1999) Department of Cognitive and Neural Systems -
Boston University

[4] L.Marchese "A neural network chips based server" - ANNIE
2000: Smart Engineering System Design (05/08/2000)
(University of Missouri-Rolla)

[5] L.Marchese “Intelligent engineering systems through
Artificial Neural Networks: a neural network chips based
server" - ASME PRESS - Editors: Cihan Dagli, Anna
L.Buczak, Joydeep Ghosh, Mark J.Embrechts, Ocan Ersoy,
Stephen Kercel

[6] IBM, Silicon Recognition, “ZISC036 Operational Manual”

[7] General Vision Inc, “CM1K Technical Manual”,
www.general-vision.com

[8] General Vision Inc, “CM1K, the simplest API”,
www.general-vision.com

[9] General Vision Inc, “CM1K The fastest KNN chip”,
www.general-vision.com

[10] General Vision Inc, “NeuroMem Decision Space Mapping
Manual”, www.general-vision.com

[11] General Vision Inc, “NeuroMem Technology Reference
Guide”, www.general-vision.com

[12] Kohonen, T. (1982). “Self-organized formation of
topologically correct feature maps.” Biological Cybernetics,
43:59-69.

[13] Honkela, T., Kaski, S., Lagus, K., and Kohonen, T. (1996).
“Exploration of full-text databases with self-organizing
maps.” Submitted to ICNN-96, Washington D.C.

[14] Kaski, S., Honkela, T., Lagus, K., and Kohonen, T. (1996).
“Creating an order in digital libraries with self-organizing
maps” Submitted to WCNN-96, San Diego, California.

[15] Kohonen, T. (1995). “Self-Organizing Maps” Springer,
Berlin, Heidelberg.

[16] Buhmann, Martin D. (2003), “Radial Basis Functions:
Theory and Implementations”, Cambridge University Press,
ISBN 978-0-521-63338-3.

http://www.general-vision.com/
http://www.general-vision.com/
http://www.general-vision.com/
http://www.general-vision.com/
http://www.general-vision.com/

