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Abstract This document is a feasibility study on the development of a new generation of Internet Search Engines that 
should enable the professional user to search documents by complex contexts instead of single words linked by logical 
conditions. The method is well known in the literature and is, often, correlated to the WEB-SOM neural technology. This 
paper approaches the problem with a new perspective that uses a hierarchical structure of the contexts and the latest neuro-
morphic VLSI chip technology. Furthermore, the proposed method is based on a user-friendly X3D (successor of the 
Virtual Reality Modelling Language) GUI (Graphical User Interface). The user can search documents giving as input a 
reference document that is used by the neural search engine in order to find similar documents.       
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1. Introduction 
 
In this paper, we describe a feasibility study of the Internet 
Search Engine based on context instead of a collection of 
single words. The main difference is that the importance of 
any single word builds the context. If the word is repeated 
many times in a document, such a word assumes a higher 
importance. The vector composed by the number of 
repetitions of meaningful words constitutes the 
“fingerprint” of the document. The standard way to search a 
document is by typing some words that the desired 
document must contain.  The context-search modality is by 
writing a small prototype of the document we are searching. 
In such a way, the input could be a document and the output 
is a list of documents strongly correlated with it. 
There have been many studies on this argument, and they 
were prevalently based on the SOM (Self Organizing Map) 
developed by Teuvo Kohonen [15]. These studies are, 
commonly, known as WEB-SOM.  
The architecture of the proposed search engine is based on 
the RBF (Radial Basis Function) neural network [16]. More 
precisely, on its implementation in hardware on the 
commercial neural chip CM1K [7].   
 
 
1.1. The WEB-SOM Model  
 
WEB-SOM means WEB Self-Organizing Maps and is an 
algorithm that orders an information space [12][13][14]. 
The map places similar documents in closed spaces. The 
order helps in finding related documents once any 
interesting document is found. Fig.1 shows the basic 
principles of the method and Fig.2 shows a typical map 
obtained with such algorithm. The experiments made 

around this algorithm, typically, produced bi-dimensional 
maps containing “agglomerates” of similar documents. 
Moving the cursor on such agglomerates the most used 
words are displayed to the user in order to inform about the 
context of these documents. There are many different 
implementations of the WEB-SOM methodology that 
produce various types of graphical outputs and are, 
sometimes, organized in hierarchical structures. The main 
characteristic of the WEB-SOM methodology is the self-
organization that characterizes the SOM neural network, 
often cited as Kohonen Map.   
 
  

 
Figure 1. The WEB-SOM methodology. 



 

 
Figure 2.  The typical output map of the WEB-SOM. Some words identify 
the concentration of documents. A dark color indicates a more populated 
area. Moving the cursor on the words, a list of documents can be displayed 
in some other window.  
 

2. The New Proposed Methodology 
 
The methodology proposed in this paper is different from 
the WEB-SOM approach in many aspects. The first is that it 
uses a supervised neural network model (Radial Basis 
Function). The second difference is that the hierarchical 
structure of clusters organizes different levels of sensitivity 
to the fingerprint of the documents. Another important 
difference is the use of the latest commercially available 
neuro-morphic VLSI technology for pattern recognition. 
Such a technology should enable the servers of the Internet 
Search Engine to manage multiple concurrent queries of 
document’s fingerprint fuzzy comparisons with the 
database. Furthermore, we propose an X3D (successor of 
VRML) browser that enables the user to navigate in a 3D 
world filled by a hierarchical structure of clusters of 
documents. The experience is that of moving in a bookstore 
with nested rooms. As we add new words, we contribute to 
specialize the desired context and we, automatically, move 
in a room or we enter in a more specialized sub-room. 
Direct moving commands could help the navigation. If the 
user has a reference document, in any format, he can put 
directly such a document in the browser. The complex 
fingerprint extracted shall be sent to the Internet Search 
Engine that shall compare it with the entire database 
responding directly with a list of similar documents.  
This technology has been already presented, in 2000, by  
L.Marchese at fourth “International Conference on 
Cognitive and Neural Systems” [1], and at  and at “First 
International Zero Instruction Sensory Computing 
Conference” [2]. The concept of “Pattern Recognition 
Neural Server” was already presented by L.Marchese in 
1999 at third “International Conference on Cognitive and 
Neural Systems” [3] and ANNIE 2000 [4][5]. In the year 
2000 the demand and requirements of the internet users 
were not sophisticated as today, and this proposal arrived, 
probably, to early. Furthermore, the commercial silicon 
neuro-morphic technology was, at that time, limited to 36 
neurons in a chip [6] while the current technology has 1000 
neurons in a chip [7].                             
 
2.1. The Radial Basis Function Model and CM1K 
Neuro-Morphic Chip 
 
A radial basis function network (Fig.3) is a neural network 
that uses radial basis functions as activation functions [16]. 
It is capable of representing complex nonlinear mappings 
and is widely used for function approximation, time series 
prediction, and control.  

The CM1K chip is a hardware implementation of an RBF 
neural network. The neurons are capable of ranking 
similarities (L1 or LSUP distance as described in Fig.4) 
between input vectors and the reference patterns they hold 
in memory. The neurons report conflicting responses or 
cases of uncertainty, as well as unknown responses or cases 
of anomaly or novelty. The time necessary to obtain a 
response is independent of the number of committed 
neurons in the network.  
The model generator built-in the CM1K chip makes it 
possible to learn examples in real-time when they drift from 
the knowledge residing in the current neurons. The 
“novelty” examples can be stored in neurons assigned to a 
different context to allow a supervised verification and to 
learn at a later time.  
The ability to assign the neurons to different contexts or 
sub-networks allows building hierarchical or parallel 
decision trees between sub-networks. This behavior leads to 
advanced machine learning with uncertainty management 
and hypothesis generation. Fig.5 and Fig.6 show the 
learning process respectively, and the recognition process 
flows in the CM1K chip. Fig.7 shows the board NeuroStack 
that contains four CM1K chips for a total of 4096 neurons 
and a stack of multiple boards. The user can stack these 
boards together, and they self connect in daisy-chain: two 
boards constitute an RBF neural network of 8192 neurons 
and so on.  
  

 
Figure.3 Radial Basis Function architecture.  

 
Figure 4. L1 and LSUP distance calculation.  
 
 

 
Figure 5.  Learning process flow chart in CM1K.  



 
Figure 6.  Recognition process flow chart in CM1K. 
 

 
Figure 7. A CM1K stackable board (NeuroStack) and a stack of multiple 
boards in daisy-chain connection.A stack of multiple boards works like a 
large neural network.  
 
 
2.2. Dictionary building process 

Many WEB-SOM papers describe this process that has the 
purpose to build a dictionary of meaningful words by 
analyzing a huge collection of documents. The meaningful 
words are those that can be considered useful to 
discriminate between contexts. In this paper, we briefly 
analyze this process introducing some new algorithmic 
proposals. We must note that the scope of the mentioned 
studies on the WEB-SOM was quite limited. We think that 
other methodologies could be more efficiently applied in 
order to build a dictionary of meaningful words in a 
comprehensive context like that of the entire Internet 
contents. In this study, we use the CM1K in order to create 
the dictionary containing all the meaningful words for 
arguments discrimination. However, we want suggest that a 
hash algorithm could efficiently perform this procedure in a 
conventional computer. The CM1K can compare the current 
word with all the stored words in parallel mode without the 
use of hash algorithms and then increase the counter 
associated with the firing neuron category. In order to 
perform this operation, we must set MIF=0 and MAF=0 

(MInimum influence Field and MAximum influence Field).  
Infact we need a perfect match between the pattern and the 
prototype:  words must be equal and not similar. Therefore, 
the L1 or LSUP distance must be null.  
Two counters are associated to any neuron. The first counts 
the number of times the word is present in all documents 
(TCNT).  The second counts the number of documents in 
which the word has been found (DCNT). Finally, 
elaborating this information, we can decide which words 
are meaningful in order to discriminate between arguments. 
A conventional computer program implements these 
counters that are external to the CM1K. Fig.8 shows the 
procedure flow of this process. When we have stored the 
words on the CM1K(s) memory, we need to optimize the 
dictionary, removing words not meaningful for arguments 
discrimination. We propose two rules in order to perform 
this operation:  

Meaningful_Flag [Word [Class]] = True  
if both the following conditions are true: 

1. (Min_1 < TCNT[Class] < Max_1) = True  
2. (Min_2 < DCNT[Class] < Max_2) = True  

If (TCNT < Min_1) then the word is used too few times 
to be associated with a context.  
If (TCNT > Max_1) then word is probabilistically 
evaluated as a common use word and thus, it has not 
context discrimination value. Min_1 and Max_1 should 
be empirically or statistically evaluated.                                       
Min_2 = (tot_no_of_analyzed_docs /  G) * (W/100). 
The context granularity of the database is forced to G 
(the maximum number of contexts/categories) . If the 
number of documents containing the specified word is 
lower than W% of the mean dimension of one 
context/category, then the word is not valid for the 
context/category discrimination.                                              
Max_2 = (tot_no_of_analyzed_docs * C) / G. If the 
number of documents having at least one element of 
the specified word is matching more than C 
contexts/categories, the word is considered not valid 
for the context/category discrimination. TCNT is the 
total counter of words, DCNT is the counter of 
documents containing the word and Class is the class 
associated with a word.  

 

 

Figure 8. The dictionary building process 



When the Boolean vector of meaningful words is complete, 
it is possible to optimize the memory of the CM1K(s) 
removing the not utilized prototypes (those prototypes 
associated with a false flag). We can make it knowing that 
CLASS = NEURON_INDEX because of CLASS is 
assigned to a new committed neuron, during learning, as the 
sequential index of the word. We need to build an algorithm 
that shift down the memory of CM1K in any position is 
needed (from a position to top) up of the required size 
correcting the associated classes. We have to access in this 
case the CM1K in SR mode (Save/Restore) in order to 
disengage useless prototypes.  
Now we can save the synaptic memory of the CM1K on a 
file and reload it to recognize words from documents.  
The number of neurons utilized (equal to the number of the 
valid words) is the dimension of the "fingerprint" of 
documents.  
Documents clustered by source and clusters logically 
ordered will result in such a degree of context linearity in 
the dictionary. This property can be an important 
improvement of the behavior conditions of the document 
vector compression.  
 
2.3. Documents fingerprint extraction and compression 

We build a histogram of any dictionary’s word to extract 
the document’s fingerprint. The document’s fingerprint is a 
vector with the dimension of the dictionary. This process 
will be quickly performed reading any word of the 
document and identifying its byte-vector with an “Identify” 
operation on the CM1K loaded with the synaptic memory 
representing the dictionary. Fig.9 shows this procedure. 
Alternatively we could use a Hash algorithm because the 
identification of the word is, again a “perfect match” 
comparison. 
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Table 1. Random Bits Matrix for compression M to N. The component 
<n> is computed as the sum of the components of the original vector 
corresponding to bits=1. The number of bits=1 in each row is fixed. 
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Table 2. Random Bits Matrix for compression M to 256. The components 
of the original vector of size M are selected if the corresponding bit value 
is 1. There are 256 bits=1 in each row. The table builds N vectors of 256 
components. 

Figure 9. The document fingerprint extraction process 

We have an N-dimensional vector for any document of the 
collection. N is the dimension of the dictionary and is too 
large for any successive identification (N > 10000). We 
require a compression of the vector that does not affect 
similitude between couples of vectors. More precisely, the 
compression must not affect the Euclidean distances 
between any possible couple of vectors (in our case the 
Euclidean distance is replaced by the L1 or LSUP).  
In the WEB-SOM work (Kohonen), a compression based 
on vertically normally distributed random bits matrix was 
used in order to compress the dictionary vector (Table.1). 
The formula used to compute the new reduced vector is:  

0
[ ] [ ] [ ][ ]MV n V m Bit n m′ = ×∑                             (1) 

We want use the CM1K to perform the compression task. 
We have 10000 components vectors and need to have 
equivalent vectors of 256 components. The equivalence is 
referred to the normalized distance between couples of 
vectors: we do not use Euclidean distance but the L1 or 
LSUP distance in order to have compatibility with the 
CM1K. The final vector should be recognizable by the 
CM1K (256 components byte wide comparison) in one 
single recognition operation. The compression is performed 
using a matrix with 256 randomly distributed bits "1" in 
each row that builds a 256 components vector as a result of 
the AND operation with the original vector (Table.2). The 
CM1K(s), previously trained with fixed random patterns 
recognizes the vector and the matching class is one 
component of the new compressed vector. The training set 
is composed of 256 patterns (256 components sized) 
randomly generated. These patterns are sorted on the basis 
of the L1 distance with a K-Nearest-Neighborhood 
procedure and assigned to an incremental category number. 
Furthermore, the reference patterns must have a minimal 
distance (a defined threshold) from the nearest patterns 
assigned to the lower and higher category number.  We 
repeat this step with different Boolean vectors for any 
component of the new compressed vector (Fig.10). This 
compression is more reliable than the simple Bits Matrix 
compression: one of the reasons can be intuitive as 
explained in Fig.11 and Fig.12. The new vectors conserve 
the similitude property better than the random bits matrix 
processed vectors. This property is true if the documents 
contain a quite high number of words of the dictionary. The 
system behaves better working on the database of large 
documents that little ones, as well as any other text-analysis 
algorithm. The test to verify the similitude-safe property is 
following explained. We build a database of pseudo-random 



vectors composed of 10000 components and chose a 
reference vector. The reference vector is compared using a 
normal program of L1 distance computation with all the 
other vectors. We insert in the list all the vectors having 
normalized distance < D_MAX (2). This process is very 
long and could be performed quickly using an appropriate 
algorithm on the CM1K.  However, we use a simple 
program on a conventional computer, because it is used 
only one time for a test. 

 

Figure 10a.  Random-bits-matrix compression with L1 or LSUP distance 
recognition based on random reference prototypes . The reference 
prototypes are ordered by L1 distance (K-nearest-Neighborhood) and 
assigned to an incremental category number (Fig.10b). 

 

 

Figure 10b.  The flow-chart of the procedure used to sort the reference 
prototypes by L1 distance.  Any randomly generated vector  is compared  
with all the previous vectors and they are sorted by L1 distance with the 
KNN algorithm (K-Nearest-Neighborhood). 

    
Figure 11. The standard random-bit-matrix compression methodology: 
swapping couples of selected components in the original vector, the single 
component of the compressed vector does not change.  

 

  
Figure 12. In the proposed random-bits-matrix compression followed by 
L1or LSUP distance recognition swapping couples of selected components 
in the original vector, the single component of the compressed vector 
changes as required. 

 

We repeat the process with the equivalent 256 components 
compressed vectors. Then we insert in the second list the 
vectors having normalized distance < D_MAX. The 
equivalence of the two lists should mean a 100% similitude 
property safe: a value over 70% is acceptable. We repeat 
the test with many target vectors. The standard deviation (3) 
of the results obtained should be very limited in order to 
consider this test reliable. At the end of this process, the 
average of the results should be considered. 
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 2.3.1 Examining the output of this process 

The output of this process is a list of records composed of 
[URL][VECTOR][MUW] related to the examined 
documents. The URL is Uniform Resource Locator for the 
specified document while VECTOR and MUW are 
respectively the fingerprints and the most used word of the 
document (Table.3).  

  URL VECTOR MUW 
http://domainX.dir1.docZ.html [230][234][200]...[010] transistor 
http://domainY.dir1.docW.html [240][134][002]...[030] optical 
http://domainZ.dir1.docY.html [130][034][005]...[050] car 
http://domainZ.dir2.docD.html [030][114][135]...[120] network 

.......... .......... .......... 
Table 3. Association of URL, fingerprint and Most Used Word 

 
2.4. Hierarchical clustering and 3D mapping  
 
As we have explained above, the system is based on a 
hierarchical structure of clusters or “containers” that we can 
see as “nested” rooms of a bookstore. The level <0> is the 
most detailed level or, using the bookstore’s simile, is the 
room where you can find, finally, the books you are 
searching. The hierarchy replicates upper levels a certain 
number of times (the granularity of the hierarchy). These 
levels are here, generically, indicated as level <n>.          

 

2.4.1.  Level <0> clustering 

When we have a table with records 
<URL><VECTOR><MUW> we must put them into 
clusters basing this operation on the distances between their 
vectors that we have called "document fingerprint."  
We want perform this process as fast as possible using the 
recognition of the Radial Basis Function hardware 
implementation. The choice of CM1K neural chip is related 
to the easy to understand behavior and programming 
interface and mainly for its "unlimited" expandability at no 
cost of performance.  
The process of clustering (Fig.13) is a hybrid situation 
where some aspects of supervised and unsupervised 
learning behave together. We must perform the learning 
process without knowing a-priori classes associated with 
patterns, but, at the same time, we need to associate a class 
to any cluster. The choice is to associate an incremental 
number linked with the commitment of a new prototype 
neuron in the Radial Basis Function neural network. We 
select MAF (Maximum Influence Field)[7] following the 
relation:  MAF = f ( DB_SIZE, NN_MAX_SIZE );  

DB_SIZE is the size of the database and NN_MAX_SIZE 
is the maximum number of neurons available.When the 
input pattern does not match within the influence field of 
any other existing prototype, the learning process commits a 
new neuron. This new neuron has MAF as influence field. 
The new prototype connects with a new cluster.   
The learning process never reduces the influence field of a 
prototype: the category-mismatch condition cannot happen 
[7] because any new category is a sequential number.  
When the CM1K learns a pattern, we memorize the URL 
(Uniform Resource Locator) of the document and its most 
used word (MUW) in a database. The key of such a 
database is simply the number of the cluster. The relation is 
"one to many" because any cluster contains many URLs 
with the associated MUW (Table.4 and Table.5).  

 

CLUSTER_0 VECTOR URL MUW 

23403 
 

[120] 
[030] 

... 
[240] 

http://domainX.dirX.docX.html neural 
... ... 

http://domainX.dirX.docX.html Kohonen 
Table 4.  Example of   records for the key CLUSTER = 23403 at the 
level<0> 
 
 

CLUSTER_0 VECTOR URL MUW 
… … … … 

23403 
 

[120] 
[030] 

... 
[240] 

http://domainX/dirX/docX.html neural 
... ... 

http://domainX.dirX.docX.html Kohonen 
… … … … 

30000 

[220] 
[130] 

... 
[140] 

http://domainX.dirX.docX.html RBF 

… … 

http://domainX.dirX.docX.html KNN 

… … … … 

Table 5.  The table with more clusters at the level<0>. A cluster contains 
many URLs and the associated MUWs.  

 

  
Figure 13. Clustering process from documents to level<0> clusters  
 



2.4.2. Level <n> clustering 

The upper clustering levels supply a hierarchical structure 
for the navigation of the database. The number of clustering 
levels is a function of the database dimension and the 
degree of roughness that best fits a meaningful navigation. 
Starting from n=1, any cluster of Level<n> does not contain 
URLs but the Level<(n-1)> clusters. An MUWs list 
connects with any Level<(n-1)> cluster, and a number 
identifies any cluster (Table.6 and Table.7).  In order to 
enable a 3D navigation, we need to add at this record some 
information that represents the x-y-z position of the cluster 
in 3D space. We perform this operation with a recognition 
operation on the vector divided into three elements, using 
CM1K(s) trained with predefined pseudo-random patterns 
(Fig.14 and Fig.15):  

X = CLASS(k = 0 - m STEP 3) { V[k] }  
Y = CLASS(k = 1 - m STEP 3) { V[k] }  
Z = CLASS(k = 2 - m STEP 3) { V[k] }   
  

Figure 14. Clustering process from level <n-1> to level <n> clusters 

    

Figure 15.  The computation process of coordinates. We split the 
fingerprint into three parts, and the CM1K recognizes these parts 
separately. We use a database of fixed random patterns as neural memory 
of the CM1K. We use the class (range 0-16000) as a coordinate.   

 
 
2.5. From clusters to X3D 

The process described here is required in order to obtain a 
full X3D hierarchical description of the database space.  
X3D (successor of VRML) is featured to describe tri-
dimensional spaces and environments containing three-
dimensional objects. X3D files are files that can be 
interpreted by X3D browsers. An X3D browser enables the 
navigation of the spaces described by X3D files. Our 
objects are very simple geometrical shapes because they 
must represent the clusters as “containers” or “rooms”.  
Fig.16 shows how the data contained in cluster tables are 
used to build X3D files.  
Fig.17 shows the process that creates a hierarchical 
structure of X3D files starting from cluster tables.  
  

CLUSTER 
 n VECTOR CLUSTER 

 n-1 MUW-LIST X Y Z 

2366 

[120] 
[030] 

… 
[240] 

23403 WORD1, ...n 2404 1230 240 

... WORD1, ...n ... ... ... 

32240 WORD1, ...n 2400 1040 200 

Table 6. Example of records for the key CLUSTER = 2366 at the level<n> 

 

 CLUSTER 
 n 

VECTOR CLUSTER 
 n-1 MUW-LIST X Y Z 

… … … … … … … 

2366 

[120] 
[030] 

… 
[240] 

1 WORD1, ...n 2404 1230 240 

... WORD1, ...n ... ... ... 

32240 WORD1, ...n 2400 1040 200 

… … … … … … … 

3000 

[230] 
[200] 

… 
[100] 

1 WORD1, ...n 1600 200 500 

… WORD1, ...n … … … 

2000 WORD1, ...n 340 2340 1300 

… … … … … … … 

Table 7.  The table with more clusters at level<n>. The sub-clusters of 
level<n-1> have their MUW-LISTs and coordinates associated. 
 
2.6. X3D Data Base Navigation 

The first access to the database is the highest level X3D file 
in a hierarchical structure. Moving in this space, we can see 
many objects representing lower level clusters positioned 
dependently of their associated vector.  
Thus, we can see zones more populated of objects than 
others.  
The user can walk, fly, translate, tilt, yaw, pitch and roll 
using keys on the browser or a specialized joystick. When 
the cursor is on an object, the browser shows, in another 
frame, the list of words associated with the cluster that is 
represented by this object. The X3D file contains this list of 
words. Looking at these words, we can understand the 
contents of the cluster and decide if it is interesting for our 
research. In this case we can click on the object obtaining 
the download and visualization of the X3D file associated.  
This type of navigation looks more enjoyable than useful 
and must be enhanced enabling the user to move in this 
world inputting complex context information.  



2.7. Context-based navigation 

We need to enable the user to move in the 3D space not 
only making direct X3D movements, but also putting 
context information. There are two possible scenarios of 
this behavior. In the first, the user has a “reference 
document” and wants find similar documents. In this case, 
the clustering processes explained in Figs.13, and 14 can 
manage the navigation. The user can upload the “reference 
document” into the browser, and its fingerprint is sent to the 
Internet Search Engine. The Internet Search Engine 
compares the fingerprint with the database using a Pattern 
Recognition Neural Server based on CM1K boards 
(Fig.19). The user is then automatically transported in the 
3D world in the sub-space addressed by the fingerprint of 
the “reference document”. The user could, optionally, select 
if he wants confirm manually any sub-cluster passage. If the 
fingerprint of the “reference document” is enough detailed, 
the user could be directly transported to the deepest 
bookstore room containing the “books”. If the fingerprint is 
not enough detailed or it does not fall in the “influence 
field” of any deepest “room”, the user could be stopped at 
any clustering level in any x-y-z position. In such a case, 
the user should navigate from that point with direct 3D 
movements helped by the MUW-lists associated to clusters 
that are visible in the window of the browser when left-
clicking on the cluster.  

In the second scenario, the user does not have a reference 
document and needs to build incrementally a context by 
typing words in the window. In this second case, a real 
fingerprint cannot be constructed reliably because the user 
should be asked to input too many words and indicate the 
“weights” of them for the context. In order to manage a 
navigation driven by small reference context, we have 
proposed the clustering process of Fig.17. Comparing such 
a process with that of Fig.14, the reader can note that we 
have added the management of a new table “word-to-
coordinates”. Fig.18 explains the navigation process. Any 
time the user inputs a new word the server calculates the 
contribution of such a word to build a new position and 
sends these coordinates to the client browser. The server 
and the client share the computation of the new position. 
The server sends the coordinates associated to that word in 
a specific cluster. The server finds the coordinates in the 
corresponding table “word-to-coordinates”. The client (the 
browser) averages these coordinates with the current 
coordinates in order to build the final position. The 
clustering process of Fig.17 builds a word-to-coordinates 
table for any cluster at any clustering level. This navigation 
process does not require the pattern recognition capability 
of the Neural Server, but it is not exactly the most important 
target of this feasibility study. We believe that the real 
revolution in the research of scientific and professional 
documents is that one performed uploading the “reference 
document” as shown in Fig.19. The browser should accept 
any document format (Txt, RTF, Pdf, Word, PostScript), 
and the server should extract the fingerprint.  Then, the 
server asks for a pattern recognition service to the CM1K 
server and forwards the results (coordinates or cluster 
number) to the client (browser). In the next chapter, we 
propose an alternative simplified Internet Search Engine 
based on multiple dictionaries associated with specific 
disciplines.  

 

Figure 16. CLUSTER_n associates with an X3D file  
and contains the CLUSTER_(n-1) - object inside X3D file. The server 
dynamically builds the X3D file from the table. The x,  y, z are the 
coordinates of the object. The MUW-LIST associated to the object is 
displayed by the browser when the cursor is on the object. 

 

 

Figure 18. The Internet X3D browser queries the Internet Search Engine 
with some words that build a small context system. 

 
Figure 17. Clustering process from level n-1 to level n clusters with the 
management of queries containing a small number of words (small 
context) instead of a real reference document. 



 

Figure 19. The Internet X3D browser queries the Internet Search Engine with reference documents. The “CONTEXT” sent by the HTTP server to the 
CM1K server is not referred to the document but is an internal parameter of the CM1K that selects the appropriate synaptic memory for the hierarchy level 
and the current cluster. 
 
 
 
 
 
 
 
 

3. Fingerprint-based on Specialized Dictionaries 

There is an alternative simpler way to build context based 
Internet Search Engines. Instead of considering context in a 
continuous space we could decide to discretize this space 
considering a large number of specialized dictionaries 
dedicated to specific disciplines from economy to science 
and technology.  A hierarchy with different levels of 
specialization organizes the system. Experts in any specific 
discipline could build specialized dictionaries. A “one to 
many” database relation should link any specific word to 
dictionaries at different levels of the hierarchy. The 
fingerprint of a document is the number of words linked to 
any specific dictionary. The fingerprint’s size is the number 
of dictionaries for the current level of the hierarchy. The 
server uses the database of relations word-dictionary in 
order to build the fingerprint of the document. The Internet 
Search Engine, as usually, scans the net contents and builds 
the fingerprints of the documents updating the database 
based on Table 3, Table 4 and Table 6.     In our proposal, 

we fix the number of dictionaries for any level of the 
hierarchy to 256 in order to be compatible with the 
maximum dimension of the CM1K vector. The fingerprint 
of a document is a 256 elements vector that can be 
computed counting the document’s words belonging to the 
256 specialized vocabularies. From the model described in 
the first part of this document, only the fingerprint 
extraction modality is different, and we could consider valid 
any other process described. The advantage of this approach 
is the higher reliability of the fingerprint. The drawback is 
the need to fix, a priori, a comprehensive hierarchical 
structure of the global knowledge available on the Internet. 
Indeed the origin of a new discipline would not be tracked 
by the system. On the contrary, this new discipline would 
be tracked by the system based on the global dictionary’s 
fingerprint, provided that this discipline does not introduce 
too many neologisms.  Fig.21 shows the fingerprint 
extraction process based on specialized dictionaries. In 
order to perform this process with the CM1K 
(MIF=MAF=0), a previous learning process is required 
(Fig.20).      



 

Figure 20. The process related to the association of words to multiple 
dictionaries  
 

  

Figure 21. The fingerprint extraction process from a document in a 
multiple dictionaries framework.  
 
 
4. Conclusions 
 
In this paper, we have presented a feasibility study for the 
realization of a new generation of Internet Search Engines.  
These engines are more suitable for professional customers 
that need to search documents by complex contextual 
information instead of simple collections of words linked by 
logical conditions. In this study, we have used the latest 
neuro-morphic VLSI pattern recognition technology and the 
most sophisticated Internet navigation languages. The use 
of pattern recognition specialized chips enables the real-
time management of multiple clients queries on a database 
of document fingerprints. The server must analyze a huge 
quantity of fingerprints in a fuzzy way that is not suitable 
for conventional processors. 
We believe that this is the right time for a new generation of 
Internet Search Engines that could search images and 
documents following a fuzzy “brain-like” philosophy 
instead of an Aristotelian or Boolean method. 
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