

CogniPat SDK
User’s Manual

SOFTWARE DEVELOPMENT KIT FOR
PATTERN LEARNING AND

RECOGNITION WITH
NEUROMEM SILICON NETWORK

Version 5.3
Revised 09/04/2018

CogniPat SDK 2

CONTENTS

1 Introduction ... 4
1.1 Typical Application block diagram ... 5
1.2 What is a feature vector? ... 5
1.3 How do the neurons learn and recognize? .. 6
1.4 How to use the knowledge built by the neurons? ... 7

2 Package Content .. 8
2.1 Supported hardware .. 8
2.2 Bin Folder ... 8
2.3 Examples .. 8
2.4 Interfacing to a NeuroMem hardware platform .. 8

3 What is new in this version? .. 9
4 Hardware Interface Functions ... 10

4.1 int Version();... 10
4.2 int Connect(int Platform, int DeviceID); ... 10
4.3 int Disconnect(); ... 10
4.4 void GetNetworkInfo(int *neuronAvailable, int *neuronMemorySize) ... 10

5 Network Initialization and Global Settings .. 11
5.1 Initialization .. 11

5.1.1 int ClearNeurons();.. 11
5.1.2 Forget(); ... 11

5.2 Choice of context and boundaries ... 11
5.2.1 SetContext(int context, int minif, int maxif); ... 11

5.3 Working with multiple contexts ... 12
5.4 Choice of classifier.. 12

6 Learning and Recognition functions .. 13
6.1 void Broadcast(int vector[], int length) ... 13
6.2 Int(ncount) Learn(int vector[], int length, int category);.. 13
6.3 Int(nsr) BestMatch(int vector[], int length, int* distance, int* category, int* nid); 14
6.4 Int(responseNbr) Classify(int vector[], int length, int K, int distance[], int category[], int Nid[]); 15

7 Loading and Retrieval of neurons’ content ... 16
7.1 Int(ncount) CommittedNeurons(); ... 16
7.2 void ReadNeuron(int neuronID, int context, int model[], int aif, int minif, int category); 16
7.3 Int(ncount) ReadNeurons(int *neurons); ... 17
7.4 Int(ncount) WriteNeurons(int *neurons, int ncount); ... 17
7.5 Int(ncount) SaveNeurons(char *filename); .. 18
7.6 Int(ncount) LoadNeurons(char *filename); ... 18
7.7 Int(ncount) GetNeuronsInfo(int* MaxContext, int* MaxCategory) ... 18
7.8 void SurveyNeurons(int Context, int CatHisto[], int CatDegHisto[], int MaxAIFHisto[]) 18

8 Vector Batch Processing .. 19
8.1 Supervised Batch Learning ... 19

8.1.1 int LearnVectors(int *vectors, int vectNbr, int vectLen, int *categories, bool ResetBeforeLearning, bool
iterative); ... 19

8.2 Unsupervised Batch Learning ... 19
8.2.1 int BuildCodebook(int *vectors, int vectNbr, int vectLen, int CatAllocMode, int InitialCategory, bool
WithoutUncertainty); .. 19

8.3 Batch Classification .. 20
8.3.1 void RecognizeVectors(int *vectors, int vectNbr, int vectLen, int K, int *distances, int *categories, int
*nids); 20

9 Advanced Functions ... 21
9.1 Register Transfer Level functions ... 21

CogniPat SDK 3

9.1.1 int Write(unsigned char module, byte reg, int data); .. 21
9.1.2 int Read(unsigned char module, byte reg); ... 21
9.1.3 int Write_Addr(int addr, int length_inByte, byte data[]); .. 21
9.1.4 int Read_Addr(int addr, int length_inByte, byte data[]); ... 21

9.2 GV Protocol definition .. 22
9.3 Tentative Address Mapping Common to all platforms .. 23

10 Example script .. 24
Step 1: Learn .. 24
Step2: Recognition ... 24

10.1.1 Case of uncertainty, closer to Neuron#1 ... 24
10.1.2 Case of uncertainty, equi-distant to Neuron#1 and Neuron#2 ... 25
10.1.3 Case of uncertainty, closer to Neuron#2 ... 25
10.1.4 Case of unknown ... 25

Step3: Adaptive learning ... 25

CogniPat SDK is a product of General Vision, Inc. (GV)

This manual is copyrighted and published by GV. All rights reserved. No parts of this work may be reproduced in any
form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems - without the written permission of GV.

For information about ownership, copyrights, warranties and liabilities, refer to the document Standard Terms And
Conditions Of Sale or contact us at HUwww.general-vision.comU.

http://general-vision.com/documentation/GV_StdTermsAndConditionsOfSale.pdf
http://general-vision.com/documentation/GV_StdTermsAndConditionsOfSale.pdf
http://www.general-vision.com/

CogniPat SDK 4

1 INTRODUCTION

NeuroMem is a pattern recognition accelerator chip which is also trainable in real-time by learning examples. The
interface to a chain of neurons of any size comes down to 4 simple main operations:
- Learn a vector
- Classify a vector
- Save the knowledge built by the neurons
- Load a knowledge into the neurons

Data coming from a variety of sources
can be converted into pattern vectors
which are then broadcasted to the
neural network for either learning or
recognition. All you must do is focus
on the quality of the input signals, the
selection of relevant and discriminant
feature extractions.

The NeuroMem neurons handle the
automatic learning of your
examples and associated
categories, the recognition of new
patterns, the detection of
uncertainty cases if any, the
detection of drifts or decrease of
confidence, the reporting of
novelties and/or anomalies.

Finally, you must format
the response of the
neurons to convert it into a
global decision or action
for your application,
without forgetting to save
the knowledge built by the
neurons for backup
purposes or distribution to
other systems.

For detailed information about the neurons and their behavior, you can also refer to the NeuroMem Technology
Reference Guide.

http://www.general-vision.com/documentation/TM_NeuroMem_Technology_Reference_Guide.pdf
http://www.general-vision.com/documentation/TM_NeuroMem_Technology_Reference_Guide.pdf

CogniPat SDK 5

1.1 Typical Application block diagram

1.2 What is a feature vector?

Lets’ take the example of a dataset describing Iris flowers:

Example Feature 1 Feature 2 Feature 3 Feature 4 Category
 Sepal length sepal width petal length petal width species
1 6.4 2.8 5.6 2.2 2
2 5.0 2.3 3.3 1.0 1
3 4.9 2.5 4.5 1.7 2
4 4.9 3.1 1.5 0.1 3
5 5.7 3.8 1.7 0.3 3

 The Features columns contain characteristics of an example
 The Category column (species) is the label to learn or predict; It is naturally a string, but the digital world

relies on numeric values. Therefore, it is mapped to a number.
 1 = versicolor
 2 = virginica
 3 = setosa

 A Feature Vector is a series of features which can be heterogeneous (like in this example), or on the contrary
represent a time or spatial series, etc.

The neurons are agnostic to the data source which means that they ready to learn and recognize feature vectors
extracted from text (parsing), discrete measurements, audio signal, video signal, digital images, etc. In the case of
images, it can be a subsampling of pixels within a region of interest, a histogram, some histogram of gradients within

CogniPat SDK 6

a patch of pixels, etc. In the case of an audio or biosensor signal, the feature vector can be a set of signal samples
taken at a specific sampling rate, a histogram of peaks or zero crossing, or a power spectrum, etc.

In the NeuroMem API, a feature vector is an array of integer values with a dimension less than or equal the memory
capacity of the NeuroMem neurons (256 bytes for the CM1K and NM500 chips; 128 bytes for the Intel QuarkSE/Curie
module). Note that if the memory depth is 8-bit and not 16-bit, the upper byte of the vector data is discarded.

1.3 How do the neurons learn and recognize?

A feature vector represents a dimension (different from its length) which we associate to the notion of context. For
example, a color histogram extracted from a pixel area may have the same length as a monochrome histogram, but
its dimensionality is richer because it will contain information about the red, green and blue intensities of the region.

The only manipulation of a feature vector consists of broadcasting it to the neurons. From there, each neuron with
the selected Context, will calculate its distance from the vector to the model stored in its memory.

The next operation can be to either learn the feature vector or recognize it.

Learning means associating a Category to the vector. This category can be supplied by a supervisor or be calculated
by an unsupervised algorithm.

Recognition consists of querying the neurons to read their responses. Note that prior to broadcasting the vector, the
network can be set as a Radial Basis Function (RBF) classifier which is the default, or as a simple K-Nearest Neighbor
(KNN). Since the NeuroMem neurons auto-sort themselves per order of decreasing confidence, the 1st query returns
the Category and Distance of the neuron with closest model to the input vector. The 2nd query returns the response
of the 2nd most confident neuron, etc. How many K neurons to query depends on your application.

Our NeuroMem RBF tutorial is a simple application demonstrating how the neurons build a decision space
autonomously by learning examples and how they recognize new vectors with ability to report cases of unknown
and uncertainties too. For the sake of a simplicity, the decision space is limited to a 2D space but the mechanism is
the same to recognize a (X1, X2) vector as well as an (X1, X2, … X127) vector which is the maximum length supported
by the neurons of the CM1K.

http://www.general-vision.com/download/neuromem-rbf-tutorial/

CogniPat SDK 7

1.4 How to use the knowledge built by the neurons?

The NeuroMem network can be set to Save and Restore (SR) mode to save the knowledge built by the neurons for
backup purposes, or to distribute it to other NeuroMem platforms.

Under the SR mode, the neurons become dummy memories. The automatic model generator and search-and-sort
logic are disabled.

The following diagram shows the possible functions which can be executed in Save & Restore mode:

For more information of the NeuroMem technology, please refer to the NeuroMem Technology Reference Guide.

https://www.general-vision.com/documentation/TM_NeuroMem_Technology_Reference_Guide.pdf

CogniPat SDK 8

2 PACKAGE CONTENT

2.1 Supported hardware

The CogniPat SDK is a Dynamic Link Library which interfaces to a chain of NeuroMem neurons for learning,
classification, knowledge saving and restore.

Several versions of the DLL exist to include hardware specific drivers necessary to communicate with the selected
platform:

CogniPat_NeuroShield Nepes NeuroShield board with Cypress USB serial driver
CogniPat_NeuroStack General Vision NeuroStack board with FTDI USB driver
CogniPat_Simu General Vision cycle-accurate simulation of the NeuroMem network of 1024 neurons

All DLLs have the same entry points, so they are fully interchangeable. This means that an application developed
with the CogniPat SDK can run on all the compatible platforms by simply changing the DLL linked to the application.

2.2 Bin Folder

- Win32/ CogniPat_Simu.dll, CogniPat_NSnK.dll, CogniPat_NeuroShield.dll
- x64/ CogniPat_Simu.dll, CogniPat_NSnK.dll, CogniPat_NeuroShield.dll
- CogniPat.h Header defining the entry points to the DLL
- CogniPat.cs Class defining the entry points to the DLL for C# interface
- CogniPatClass.m Class defining the entry points to the DLL for MatLab interface

2.3 Examples

All sets of examples include the Simple Script described in this manual which helps understand the behavior of the
neurons to learn new patterns, and classify new patterns with or without uncertainty, etc.

2.4 Interfacing to a NeuroMem hardware platform

Applications developed with the CogniPat SDK can interface to any NeuroMem compatible hardware by simply
selecting the corresponding DLL.

This selection is made as follows depending on the programming environment:

 Where do I select the CogniPat DLL? Location
C++ Linked library Project/Properties/Linker/Input (declared in C++ project)
C# DLL name in DLL Import CogniPat.cs (included in your C# project)
MatLab DLL path in the CogniPat Class method CogniPatClass.m (instantiated in your MatLab script)
Python DLL path on the Ctypes.CDLL call Beginning of each example

CogniPat SDK 9

3 WHAT IS NEW IN THIS VERSION?

The function CommittedNeurons has been renamed GetCommitted

Addition of a driver for the NeuroShield board used as a USB device

The platform type passed to the Connect function is now defined as follows:
0, Simulation (dependency to the CogniPat_Simu.dll)
1, NeuroStack (dependency to the CogniPat_NSnK.dll)
2, NeuroShield (dependency to the CogniPat_NeuroShield.dll)

Vector, Model and Neuron data type have been changed from byte to integer

For practicality, the functions manipulating vector, model and neuron data now expect an array of integer as inpu.
Still the neurons of the CM1K and NM500 have a memory size limited to a byte array, so the upper byte of the input
arrays are expected to be equal to 0 when interfacing to a NeuroMem network of CM1K or NM500.

CogniPat SDK 10

4 HARDWARE INTERFACE FUNCTIONS

4.1 int Version();

Returns the version of the DLL.

4.2 int Connect(int Platform, int DeviceID);

Establishes communication with your NeuroMem platform and if applicable a specific DeviceID. This function returns
0 if the connection is successful.

Platform code DeviceID
0= Simulation of NeuroMem neurons N/A
1=NeuroStack board (4096 neurons, stackable) Reserved. Default is 0.
2= NeuroShield board (576 neurons, expandable) Reserved. Default is 0
2= V1KU camera (1024 neurons of 256 bytes) DeviceID is the USB device number connected to your

host. Default is 0.

The Connect function also detects the number of neurons available in the selected platform and clears their content.
Its execution is necessary to size the network if the hardware allows for an expansion of the network and takes
approximately 1 second per thousand neurons. The network size can then be read with the getNetworkInfo function.

4.3 int Disconnect();

Closes the communication with the current device.

4.4 void GetNetworkInfo(int *neuronAvailable, int *neuronMemorySize)

- neuronsAvalaible, number of neurons available
- neuronMemorySize, memory capacity of each neuron in bytes

CogniPat SDK 11

5 NETWORK INITIALIZATION AND GLOBAL SETTINGS

5.1 Initialization

5.1.1 int ClearNeurons();

Clear the entire contents of all the neurons including registers and memory cells. The function returns the number
of committed neurons which should be equal to zero. It also resets the Global Context, Min and Max Influence fields
to their respective default values 1, 2 and 16,384.

5.1.2 Forget();

Clears the category register of all neurons so they become uncommitted. The neurons are ready to start learning
again with the default Global Context, Min and Max Influence fields to their respective default values 1, 2 and 16,384.
Note that the memory of the neurons is not cleared. It is best to use the ClearNeurons function whenever possible,
but the Forget function is provided for applications being speed sensitive.

5.2 Choice of context and boundaries

5.2.1 SetContext(int context, int minif, int maxif);

GetContext(int* context, int* minif, int* maxif);

CONTEXT
The Context value allows to assign the neurons dynamically to the modeling of decision space based on different
feature extraction methods.
It is coded as follows in the Global Context Register (GCR) and Neuron Context Register (NCR):

- Bit [6-0] = context value, or a range of [0, 127]
- Bit 7 = Norm used to calculate the distance; 0=L1, 1=LSUP;
- The neurons with an NCR lesser than 128 calculate L1 distances, while the neurons with an NCR greater

than 128 calculate LSup distances.
- The context value 0 is special and enables all committed neurons to react to an input pattern regardless of

their individual context value.

The Minimum and Maximum Influence Fields are also global variables of the NeuroMem network and their values
should be set in relation to the dimension represented by the feature vectors and the distance calculation in use
(L1 or LSup).

MAXIF:
Control the initial level of moderation of the neurons. This limit applies to the neurons which are not yet
committed, but ready to learn. It is a maximum value assigned to a newly committed neuron if it does not fall
within the influence field of already committed neurons. Otherwise its influence field is set to its distance to the
closest committed neuron.

- Range [2, 65534]; Default 16384
- The larger the MAXIF, the more generalization or over-fitting. Tendency to create lesser liberal neurons.
- The lesser the MAXIF, the less generalization. Tendency to create many conservative neurons.

MINIF:

CogniPat SDK 12

Control the final level of uncertainty of the committed neurons. This limit applies to the neurons which are not yet
committed, but ready to learn. It is the minimum value below which the influence field of a newly committed
cannot shrink.

- Range [2, MAXIF]; Default 2
- The larger the MINIF, the more uncertain in the decision space. Tendency to create degenerated neurons

which overlap on one another. Can help flag outliers, reveal non discriminating features and more.

For more information about Learning, refer to the NeuroMem Technology Reference Guide and the NeuroMem
Decision Space mapping manual.

5.3 Working with multiple contexts

At initialization, all neurons have a context equal to the value 1.

If an application manipulates vectors belonging to different contexts, the proper context value must be written to
the Global Context register prior to broadcasting the vectors belonging to the new context. For more details, refer
to the NeuroMem Technology Reference Guide.

With a change of Context often comes a change of dimension of the feature, so the library allows changing the
minimum and maximum influence fields at the same time. The default MAXIF is 16384, and the default MINIF is 2.

5.4 Choice of classifier

The neurons can classify patterns as a Radial Basis Function (RBF) or K-Nearest Neighbor (KNN) Classifier. Use one of
the following two functions to toggle between the two modes.
RBF is the default classifier at initialization of the neurons. RBF allows to learn examples and build a highly non-linear
decision space. RBF also introduces the powerful notion of “unknown” and “uncertainty”. Refer to chapter 4.3 and
4.4 of the NeuroMem Technology Reference Guide for more details.

SetRBF();
SetKNN();

http://www.general-vision.com/documentation/TM_NeuroMem_Technology_Reference_Guide.pdf
http://www.general-vision.com/documentation/TM_NeuroMem_Decision_Space_Mapping.pdf
http://www.general-vision.com/documentation/TM_NeuroMem_Decision_Space_Mapping.pdf
http://www.general-vision.com/documentation/TM_NeuroMem_Technology_Reference_Guide.pdf

CogniPat SDK 13

6 LEARNING AND RECOGNITION FUNCTIONS

Under Normal mode, the neurons can learn and recognize patterns as shown in the following diagram:

6.1 void Broadcast(int vector[], int length)

Broadcast the input vector composed of “length” components to the neurons. The value length is cropped to the
neuron memory size if necessary. Note that the function takes an array of int as input, but the upper byte is expected
to be equal to 0 since the existing NeuroMem chips are limited to byte array memories.

If the length of the vector is L, this function executes L-1 Write COMP followed by a single Write LCOMP. It can be
used whether you intend to learn or recognize the vector.

Considerations before calling this function:
- Change the Global Context Register (GCR) if the pattern belongs to a context other than the active context
- Change the Network Status Register (NSR) to turn ON/OFF the KNN classifier
- Change the Min Influence Field and Max Influence Field

Considerations after calling this function:
- Read the Network Status Register to find out if the vector is recognized or not, with uncertainty or not
- Write the Category register to learn the vector
- Read the Distance, followed by Category to classify the vector

6.2 Int(ncount) Learn(int vector[], int length, int category);

Learn the input vector composed of “length” components as belonging to the “category”. The value length is cropped
to the neuron memory size if necessary. Note that the function takes an array of int as input, but the upper byte is
expected to be equal to 0 since the existing NeuroMem chips are limited to byte array memories. Category can range
between 1 to 32766. A category of 0 can be used to teach a counter example or a background example.

CogniPat SDK 14

The function returns the number of committed neurons (ncount). Note that this number does not increase
necessarily after each execution of the Learn function. Ncount will increase only if the vector and its associated
category represents novelty to the commited neurons.

Considerations before calling this function:
- Change the Global Context Register to match the context represented by the input vector
- Change the Min Influence Field and Max Influence Field
- Make sure the network is in RBF mode (Write NSR 0).

o The KNN mode is not appropriate for learning since it will create a new neuron each time a new
category value is taught and do nothing more. The RBF mode must be used to build a decision space
modeling multiple categories and also with areas of “unknown” or “uncertainties” which are essential
for true artificial intelligence with voluntary redundancy for accuracy, context awareness, hypothesis
generation and more.

o The Save and Restore mode is not compatible with the learning mode.

6.3 Int(nsr) BestMatch(int vector[], int length, int* distance, int* category, int*
nid);

Broadcast the vector to the neurons and read the response of the first “firing” neuron, if any, including its distance,
category and identifier. The value length is cropped to the neuron memory size if necessary. Note that the function
takes an array of int as input, but the upper byte is expected to be equal to 0 since the existing NeuroMem chips are
limited to byte array memories.

The function returns the Network Status Register and its lower byte can be decoded as follows:
- NSR=0, the vector is not recognized by any neuron (UNKnown)
- NSR=8, the vector is recognized and all firing neurons are in agreement with its category (IDentified)
- NSR=4, the vector is recognized but the firing neurons are in disagreement with its category (UNCertain)
- NSR=32, the network is in KNN mode

Distance represents the distance value between vector and the firing neuron with the closest model stored in its
memory (i.e. top firing neuron). It is calculated according to the Norm used by the neuron when it was committed
and stored in bit7 of the neuron’s context register. If no neuron fires, Distance=0xFFFF.

Category of the top firing neuron or 0xFFFF is non existent. Bit 15 is reserved for the Degenerated flag, so the
effective category value is coded on bit[14:0] and can be obtained with an AND mask with 0x7FFF.

NID is the identifier of the top firing neuron. NID can range between 1 and the number of neurons available in the
network. If no neuron fires, Identifier=0.

This function is equivalent to the Recognize function using the value K=1.

Considerations before calling this function:
- Change the Global Context Register to match the context represented by the input vector
- Change the Network Status Register (NSR) to turn ON/OFF the KNN classifier, or to turn ON/OFF the Save-and-

Restore mode.

Considerations after calling this function:
- Change the Network Status Register (NSR) to turn OFF the KNN classifier, if selected, prior to the next learning

operation.
- If the NSR indicates a case of uncertainty (value 4 or 36), you can immediately execute a series of Read(DIST) +

Read(CAT) to obtain the response of the next closest firing neurons, and this until you read a DIST=0xFFFF.

CogniPat SDK 15

6.4 Int(responseNbr) Classify(int vector[], int length, int K, int distance[], int
category[], int Nid[]);

Broadcast the vector to the neurons and read the response of the first K “firing” neurons, if applicable, including
their distance, category and identifier. The value “length” is cropped to the neuron memory size if necessary. Note
that the function takes an array of int as input, but the upper byte is expected to be equal to 0 since the existing
NeuroMem chips are limited to byte array memories.

The function returns the number of firing neurons or K whichever is the smallest. For example, if K=3, but only 2
neurons fire, the function returns, the value 2.

Distances of up the K closest firing neurons or 0xFFFF if non-existent. Each represents the distance value between
the vector and the firing neuron. It is calculated according to the Norm used by the neuron when it was committed
and stored in bit7 of the neuron’s context register. If no neuron fires, Distance=0xFFFF.

Categories of up the K closest firing neurons or 0xFFFF if non-existent. Bit 15 is reserved for the Degenerated flag, so
the effective category value is coded on bit[14:0] and can be obtained with an AND mask with 0x7FFF.

NID is the identifier of the top firing neuron. NID can range between 1 and the number of neurons available in the
network. If no neuron fires, Identifier=0.

If the value K is set to 1, the Recognize function is the same as the BestMatch function.

Considerations before calling this function:
- Change the Global Context Register to match the context represented by the input vector
- Change the Network Status Register (NSR) to turn ON/OFF the KNN classifier, or to turn ON/OFF the Save-and-

Restore mode.

Considerations after calling this function:
- Change the Network Status Register (NSR) to turn OFF the KNN classifier, if selected, prior to the next learning

operation.

CogniPat SDK 16

7 LOADING AND RETRIEVAL OF NEURONS’ CONTENT

Under the SR mode, the automatic model generator and search-and-sort logic are disabled. The neurons become
dummy memories but can be read or written in the least amount of time. This SR mode is essential to transfer
knowledge bases between hardware platforms, or make backup prior to learning additional examples. The following
diagram shows the possible functions which can be executed in Save & Restore mode:

7.1 Int(ncount) CommittedNeurons();

Report the number of committed neurons.

7.2 void ReadNeuron(int neuronID, int context, int model[], int aif, int minif, int

category);

neuronID is not an index starting from 0 but the neuron Identifier starting at 1.

Model[] is the pattern stored in the neuron memory. Note that the function returns an array of int, but the upper
byte is expected to be equal to 0 since the existing NeuroMem chips are limited to byte array memories.

Context is the neuron context register and bit 7 represents the Norm used by the neuron for distance calculation.
AIF is the Active Influence Field of the neuron (current value at the time of the Read. May decrease in the future if
new vectors with the same context as the neuron are taught)

Minif is the neuron’s Minimum Influence Field assigned at the time the neuron got committed.

Cat is the neuron’s Category assigned at the time the neuron got committed.

NeuronID can range from 1 to the number of committed neurons. If neuronID greater, the function returns the
contents of the RTL (Ready-To-Learn) neuron.

Considerations when calling this function:
If an application is dealing with vectors of a length L lesser than the size of the neuron’s memory, only the first L
values of the model[] are significant. Indeed, if the ClearNeurons function was executed prior to learning the first
vector, the remaining components from L+1 to 256th will be equal to 0, otherwise they will report values loaded at
an earlier stage into the neurons.

CogniPat SDK 17

7.3 Int(ncount) ReadNeurons(int *neurons);

Read all the committed neurons and return their content in an array with the format described below.

The function returns the number of committed neurons (ncount)

Neurons is an array of ncount * neuronData integers
NeuronData is an array of (neuronSize + 4) integers as follows:

- NeuronData[0]= NCR, Neuron Context Register
- NeuronData[1,NeuronSize] = neuron’s memory or NeuroSize components
- NeuronData[NeuronSize+1]= AIF, Active Influence Field
- NeuronData[NeuronSize+2]= MINIF, Minimum Influence Field
- NeuronData[NeuronSize+3]= CAT, Category

Considerations when calling this function:
- Note that the function returns the neurons’ memory as an array of int, but the upper byte is expected to be

equal to 0 since the existing NeuroMem chips are limited to byte array memories.
- If an application is dealing with vectors of a length L lesser than the size of the neuron’s memory, only the first

L components are significant. Indeed, if the ClearNeurons function was executed prior to learning the first
vector, the remaining components from L+1 to 256th will be equal to 0, otherwise they will report values loaded
at an earlier stage into the neurons.

7.4 Int(ncount) WriteNeurons(int *neurons, int ncount);

Clear the contents of all the neurons in the network and load them with the content of the “neurons” input array
according to the format described below. The function returns the actual number of committed neurons (ncount)
after the upload to the NeuroMem chip(s).

Neurons is an array of ncount * neuronData integers
NeuronData is an array of (neuronSize + 4) integers as follows:

- NeuronData[0]= NCR, Neuron Context Register
- NeuronData[1,NeuronSize] = neuron’s memory or NeuroSize components
- NeuronData[NeuronSize+1]= AIF, Active Influence Field
- NeuronData[NeuronSize+2]= MINIF, Minimum Influence Field
- NeuronData[NeuronSize+3]= CAT, Category

Considerations when calling this function:
The content of the neurons must be considered as a whole (aka a knowledge). Saving the neurons to an array, editing
or removing a single neuron and restoring this array can be very detrimental and produce inaccurate classification!
Remember that during the learning, the neurons are all interconnected and have auto-adjusted their influence fields
based on their common knowledge.

CogniPat SDK 18

7.5 Int(ncount) SaveNeurons(char *filename);

Save the contents of all the neurons to a file with the format below. The function returns the number of committed
neurons saved to the file. The function returns how many neurons were saved, or 0xFFFF if a problem with the file.

File header:

Header[0]= format version number;
Header[1] = maxveclength; // default=256
Header[2] = ncount;
Header[3] = 0; //reserved

NeuronData is an array of (neuronSize + 4) integers as follows:
- NeuronData[0]= NCR, Neuron Context Register
- NeuronData[1,NeuronSize] = neuron’s memory or NeuroSize components
- NeuronData[NeuronSize+1]= AIF, Active Influence Field
- NeuronData[NeuronSize+2]= MINIF, Minimum Influence Field
- NeuronData[NeuronSize+3]= CAT, Category

7.6 Int(ncount) LoadNeurons(char *filename);

Load the contents of all the neurons from a file. The function returns the number of committed neurons loaded from
the file.

The function returns the number of neurons loaded to the NeuroMem chip(s), or an error code as follows:
0xFFFF, problem with the file
0xFFF1, unknown file format
0xFFF2, incompatible with neuron length
0xFFF3, incompatible with neuron capacity

7.7 Int(ncount) GetNeuronsInfo(int* MaxContext, int* MaxCategory)

This function analyzes the content of the neurons and retrieves the maximum values of the neuron context and
category registers. The function returns the number of committed neurons.

7.8 void SurveyNeurons(int Context, int CatHisto[], int CatDegHisto[], int

MaxAIFHisto[])

This function analyzes the content of the neurons of a given Context and generates the following histograms of the
neurons per category:

- CatHisto: Number of neurons committed per category, whether degenerated or not
- CatDegHisto: Number of neurons committed and degenerated per category. The higher this number for a

given category, the stronger the indication that the models representing this category are close to another
category and that its discrimination might be subject to uncertainties.

- MaxAIFHisto: Maximum value of the AIF per category. The smaller the AIF, the stronger the indication that
the category is very peculiar and modeled with “small” neurons. The higher the AIF, the stronger the
indication that the category has a loose model and that its discrimination might be subject to uncertainties.

The three histograms must be sized as arrays of dimension MaxCatValue + 1.

The function returns the number of neurons matching the selected Context.

CogniPat SDK 19

8 VECTOR BATCH PROCESSING

8.1 Supervised Batch Learning

8.1.1 int LearnVectors(int *vectors, int vectNbr, int vectLen, int

*categories, bool ResetBeforeLearning, bool iterative);

Learn an array of vectors with their asscoiated categories. The “vectNbr” vectors are all composed of the same
number of components “vectLen”. It returns the total number of committed neurons.

- vectors= int Array with a size vectNbr * vectLen
- categories= int Array with a size of vectNbr

The flag ResetBeforeLearning allows to reset the network prior to learning. Note that this reset is a simple Write
FORGET which takes a simple clock cycle, and not a ClearNeurons which erases the content of the neurons’ memory
but takes 258clock cycles. If ResetBeforeLearning is set to 1, the function preserves the value of the minimum and
maximum Influence fields.

The flag Iterative executes the learning of the vectors repeatedly until the number of committed neurons remains
steady between two passes. This option produces a knowledge which is invariant to the order of the vectors, but
might take multiple iterations and consequently some additional time.

Considerations before calling this function:
- Clear the neurons to pad their memory with zero in case vectLen is less than 256
- Set the NSR register to 16 or 0

o If NSR=16, the vectors are loaded in Save and Restore mode
o If NSR=0, the vectors are learned using the RBF classifier

- Change the Global Context Register to match the context represented by the input vectors
- Change the Maxif : The Maxif is used when learning in normal mode (NSR=0). The higher the Maxif, the faster

the teaching, but the higher the probability of false positive
- Change the Minif : The Minif is used when learning in normal mode (NSR=0). The higher the Minif, the more

degenerated neurons and zones of uncertainty.

8.2 Unsupervised Batch Learning

8.2.1 int BuildCodebook(int *vectors, int vectNbr, int vectLen, int

CatAllocMode, int InitialCategory, bool WithoutUncertainty);

Learn an array of vectors with unsupervised allocation of categories according to the selected CatAllocMode. The
vectNbr vectors must be composed of the same vectLen number of components. This function does not clear the
existing knowledge. It returns the total number of committed neurons.

The BuildCodebook function broadcast each vector to the neurons and a new neuron is automatically committed if
this vector is not recognized (unknown). The category can be a simple increment from the category of the last
committed neuron, or a function of the vector content. Upon termination of the function, the content of the newly
committed neurons represents a codebook or a dictonnary of discriminant codes. The value of the Maximum
Influence Field when the function is called moderates the frequency of unknown recognitions. If too high, the

CogniPat SDK 20

codebook might be limited to too few neurons with large influence fields. If too low, the size of the codebook might
be close to the initial vectNbr.

- vectors= int Array with a size vectNbr * vectLen
- CatAllocMode: Defines which category to assign to a vector which is not recognized by the currently committed

neurons:
o 0: constant value
o 1: auto-increment by 1
o 2: maximum delta between the vectLen components
o 3: average value of the vectLen components
o 4: index of the input vector. This information can help retrieve the temporal position of an audio vector,

or spatial position of an image vector, etc.
- InitialCategory

o Initial value for the CatAllocMode 0 and 1
- waiveUncertainty

o If set to 1, this flag forces the learning of a vector which is recognized by the currently committed
neurons but with an uncertainty or disagreement between at least two firing neurons. This will force
the reduction of the influence fields of some committed neurons

Considerations before calling this function:
- Clear the neurons to pad their memory with zero in case vectLen is less than 256
- Set the NSR register to 16 or 0

o If NSR=16, the vectors are loaded in Save and Restore mode
o If NSR=0, the vectors are learned using the RBF classifier

- Change the Global Context Register to match the context represented by the input vectors
- Change the Maxif : The Maxif is used when learning in normal mode (NSR=0). The higher the Maxif, the faster

the teaching, but the higher the probability of false positive
- Change the Minif : The Minif is used when learning in normal mode (NSR=0). The higher the Minif, the more

degenerated neurons and zones of uncertainty.

8.3 Batch Classification

8.3.1 void RecognizeVectors(int *vectors, int vectNbr, int vectLen, int K,

int *distances, int *categories, int *nids);

Recognize an array of vectors and return the response of the first K firing neurons in the 3 arrays distances, categories
and nids. The “vectNbr” vectors are all composed of the same number of components “vectLen”.

- vectors= int Array with a size vectNbr * vectLen
- distances= int Array of size vectNbr*K reporting for each vector the distances of the K top firing neurons or

0xFFFF if less than K neurons fire.
- categories= int Array of size vectNbr*K reporting for each vector the categories of the K top firing neurons or

0xFFFF if less than K neurons fire.
- nids= int Array of size vectNbr*K reporting for each vector the identifiers of the K top firing neurons or 0xFFFF

if less than K neurons fire.

Considerations before calling this function:
- Change the Global Context Register to match the context represented by the input vectors

CogniPat SDK 21

9 ADVANCED FUNCTIONS

9.1 Register Transfer Level functions

The functions supplied in the CogniPat SDK are all based on a Register Transfer Level (RTL) protocol. Depending on
your hardware platform, the compatible CogniPat DLL is built on the use of the GV protocol in compliance with your
platform’s communication bus such as USB, SPI, I2C, RS485, etc. Note that for certain platforms, the RTL protocol
can also be used to address components other than the neurons such as memory, on-board sensors, and more.

9.1.1 int Write(unsigned char module, byte reg, int data);

Write the value data to the register reg of the module module.
Example: Write(1, 6, 3), set the minimum influence field of the network to the value 3.

9.1.2 int Read(unsigned char module, byte reg);

Return the value of the register reg of the module module.
Example: Read(1, 15) returns the number of committed neurons

9.1.3 int Write_Addr(int addr, int length_inByte, byte data[]);

Write the values of the byte array data to the address addr of the hardware platform.

Remark: The internal communication protocol of the various NeuroMem platforms reads and writes integer values
to the registers of the modules. This means that the data array is actually read two bytes at a time and each two
bytes are assembled as the upper and lower bytes of a register value.

- data= byte array[length_inByte]
- length_inByte, must be an even number of bytes (see remark above)
- addr= 4 bytes value formatted as follows:[module, 0, 0, reg]

Warning: In the case of the NeuroMem module 1, the usage of this function only makes sense for the CM_COMP
register when a vector is broadcasted to the neurons or the content of the neurons is restored. However, please
note the following:
- If the vector to broadcast to the neurons has N components, use Write_Addr to submit only the first N-1

component. Indeed the last component has to be written to the CM_LCOMP register.
- The N-1 components have to be formatted to a 2*(N-1) data array such that every odd byte is equal to 0 and

even byte is equal to a vector component.

Example:
Vector=1,2,3,4  data=0,1,0,2,0,3,0,4
Write(0x01000001, 4, data) writes the components 1,2,3 and 4 to the CM_COMP register.

9.1.4 int Read_Addr(int addr, int length_inByte, byte data[]);

CogniPat SDK 22

Read the values at the address addr of the hardware platform and store them to the byte array data.

Remark: The internal communication protocol of the various NeuroMem platforms reads and writes integer values
to the registers of the modules. This means that the data array is actually filled two bytes at a time and each two
bytes are assembled as the upper and lower bytes of a register value.

- data= byte array[length_inByte]
- length_inByte, must be an even number of bytes (see remark above)
- addr= 4 bytes value formatted as follows:[module, 0, 0, reg]

Warning: In the case of the NeuroMem module 1, the usage of this function only makes sense for the CM_COMP
register in order to read the memory of a neuron. However, please note the following:
- Reading the N components of a neuron requires that you size the data array to 2*(N-1) bytes. Every odd byte is

equal to 0 and even byte is equal to a neuron component.

Example:
Vector=1,2,3,4  data=0,1,0,2,0,3,0,4
Write(0x01000001, 4, data) writes the components 1,2,3 and 4 to the CM_COMP register.

9.2 GV Protocol definition

The GV command protocol is a generic register transfer level protocol allowing access and control the components
of a “NeuroMem Smart” board whether these components are hardware or firmware blocks. Observance of this
protocol will ensure the compatibility and portability of your APIs and FPGA IP cores across “NeuroMem Smart”
platforms.

The GV protocol is a 10-bytes control command, possibly followed by additional bytes of data as specified in the
command.

• Byte0 DeviceID
• Byte 1-2-3-4 R/W bit + 31-bit address
• Byte 5-6-7 24-bit Data length
• Byte 8-9 Minimum first 2 bytes of data
• Byte + Remaining data (up to Data Length)

Descr DeviceID[7:0] Address[31:0] Data length[23:0] Data
Size 1 byte 1 byte 3 bytes 3 bytes 2 bytes * Data

length
Write
cmd

Device
handle

Bit 31=1 Module[6:0] Register[24:0]

Size of the input
array expressed in
words

Input array

Read
cmd

Device
handle

Bit 31=0

Module[6:0] Register[24:0]

Size of the output
array expressed in
words

Output array

Examples:

Write the 16-bit value 0x33AA to the MAXIF (register 7) of the NeuroMem network (module 1)
 0x00 81 00 00 07 00 00 01 33 AA

CogniPat SDK 23

Write a vector of 4 consecutive byte values 9,8,7,6 to the COMP (register 1 of the NeuroMem network (module 1)
0x00 81 00 00 01 00 00 02 09 08 07 06

Read the 16-bit value of the MINIF (register 6) of the NeuroMem network (module 1)
 0x00 01 00 00 06 00 00 01
Data is returned into 2 bytes or a word. Unless the MINIF register has been written, its default value is 2.

Read 8 consecutive byte values of the RESULTS (register 2) of the RECO_LOGIC (module 4)

0x00 04 00 00 02 00 00 04
Data is returned into 8 bytes.

9.3 Tentative Address Mapping Common to all platforms

Address[31] = Read/Write
Address[30-24]=Module[7:0]= identifier of the component
Address[23:16]= presently unused (default 0x0000)
Address[15-8]= presently unused (default 0x0000)
Address[7:0]=Register[7:0] = identifier of an 8-bit register

Address
Range[30-0]

Module=
Address[30-24]

Description

0x00000000
0x0000001F

0= Board info Access to the settings of the board connected to the host including
but not limited to a version number, a clock counter,
enabling/disabling communication buses and I/O lines.

0x01000000
0x0100001F

1= NeuroMem network Access to the neurons to learn and recognize vectors, save and
restore knowledge.

0x02000000
0x02FFFFFFF

2= Memory Access to the SRAM address bank managing data transfer
to/from host,
from a sensor,
to/from another module

0x03000030
0x03FFFFFF

3= Flash memory Access to the Flash memory to read and write pages of data, but
also to read and decode sequences of instructions for the other
modules.

0x04000000
0x04FFFFFF

4= CogniPat engine A pattern recognition engine with functions to learn and recognize
vectors in single or batch mode. This module need access to the
memory module and may be others to get its vector data inputs
and stored or transmit its results.

0x05000000
0x05FFFFFFF

5= CogniSight engine An image recognition engine with functions to learn and recognize
visual objects or events. This module need access to the memory
module and may be others like a video sensor module to get its
pixel inputs and stored or transmit its results.

0x06000000
0x060000FFF

6= Sensor module Access to the registers of a sensor

Etc. Etc. Etc.

CogniPat SDK 24

10 EXAMPLE SCRIPT

The following script is intended to illustrate the behavior of the neurons during learning and recognition operations.
It is supplied in a variety of programming language including C/C++. C#, MatLab, Python, Arduino and more.

Step 1: Learn

Learn vector1 [11,11,11,11] (1) with category 55
Learn vector2 [15,15,15,15] with category 33(2)
Leanr vector3 [20,20,20,20] with category 100

(1) The learned vectors are purposely set to arrays of constant values so their representation and relationship
are easy to understand. The distance between two “flat” vectors is indeed the difference between their
constant value times their number of components. For example the distance between [11,11,11,11] and
[15,15,15,15] is equal to 4 * 4. This simple arithmetic makes it easy to understand the different cases of
recognition illustrated in this test script.

(2) The category of the second neuron is purposely set to a lesser value than the category of the first neuron
to verify that if both neurons fire with a same distance, the category of the neuron on the 2nd chip is still
the first the be read out

Fig1 is a representation of the decision space modeled by the 3 neurons where Neuron1 is shown in red, Neuron2
in green and Neuron3 in blue. In the follwoing 2D graph, we limit the length of the models to 2 components instead
of 4, so they can be positioned in an (X,Y) plot. X=1st component and Y=Last component, and a surrounding diamond
shape with the side equal to their influence field.

Committed neurons= 3
NeuronID=1 Components=11, 11, 11, 11, AIF=16, CAT=55
NeuronID=2 Components=15, 15, 15, 15, AIF=16, CAT=33
NeuronID=3 Components=20, 20, 20, 20, AIF=20, CAT=100

The influence fields of Neuron#0 and Neuron#1 overlap, as well as
Neuron#1 and Neuron#2 overlap but differently since their distances
from one another are different.

Step2: Recognition

The vectors submitted for recognition are selected purposely to illustrate cases of positive recognition with or
without uncertainty, as well as cases of non recognition. The program reads the responses of all the firing neurons,
which is until the distance register returns a value 0xFFFF or 65553.

10.1.1 Case of uncertainty, closer to Neuron#1

Vector=12, 12, 12, 12
Neuron 1 and 2 fire. Vector is closer to Neuron1
 Response#1 Distance= 4 Category= 55 NeuronID= 1
 Response#2 Distance= 12 Category= 33 NeuronID= 2
 Response#3 Distance= 65535 Category= 65535 NeuronID= 65535

CogniPat SDK 25

10.1.2 Case of uncertainty, equi-distant to Neuron#1 and Neuron#2

Vector=13, 13, 13, 13,
Neuron 1 and 2 fire. Vector is equi-distant to both neurons
 Response#1 Distance= 8 Category= 33 NeuronID= 2
 Response#2 Distance= 8 Category= 55 NeuronID= 1
 Response#3 Distance= 65535 Category= 65535 NeuronID=
65535

10.1.3 Case of uncertainty, closer to Neuron#2

Vector=14, 14, 14, 14,
Neuron 1 and 2 fire. Vector is closer to Neuron2
 Response#1 Distance= 4 Category= 33 NeuronID= 2
 Response#2 Distance= 12 Category= 55 NeuronID= 1
 Response#3 Distance= 65535 Category= 65535 NeuronID=
65535

10.1.4 Case of unknown

Vector=30, 30, 30, 30,
No neuron fire
 Response#1 Distance= 65535 Category= 65535 NeuronID= 65535

Step3: Adaptive learning

Learning a new vector to illustrate the reduction of neurons'AIFs.

Learn vector[13,13,13,13] with category 100. This vector is equidistant to both Neuron1 and Neuron2. Learning it as
a new category, will force Neuron1 and 2 to shrink from thei AIF=16 to an AIF=8 in order to make room for a new
neuron which will hold the new model and its category.

Committed neurons= 4
NeuronID=1 Components=11, 11, 11, 11, AIF=8, CAT=55
NeuronID=2 Components=15, 15, 15, 15, AIF=8 CAT=33
NeuronID=3 Components=20, 20, 20, 20, AIF=20 CAT=100
NeuronID=4 Components=13, 13, 13, 13, AIF=8, CAT=100

Note that if the vector to learn was [12,12,12,12], Neuron1 would shrink to 4 and Neuron2 to 12.

	1 Introduction
	1.1 Typical Application block diagram
	1.2 What is a feature vector?
	1.3 How do the neurons learn and recognize?
	1.4 How to use the knowledge built by the neurons?

	2 Package Content
	2.1 Supported hardware
	2.2 Bin Folder
	2.3 Examples
	2.4 Interfacing to a NeuroMem hardware platform

	3 What is new in this version?
	4 Hardware Interface Functions
	4.1 int Version();
	4.2 int Connect(int Platform, int DeviceID);
	4.3 int Disconnect();
	4.4 void GetNetworkInfo(int *neuronAvailable, int *neuronMemorySize)

	5 Network Initialization and Global Settings
	5.1 Initialization
	5.1.1 int ClearNeurons();
	5.1.2 Forget();

	5.2 Choice of context and boundaries
	5.2.1 SetContext(int context, int minif, int maxif);

	5.3 Working with multiple contexts
	5.4 Choice of classifier

	6 Learning and Recognition functions
	6.1 void Broadcast(int vector[], int length)
	6.2 Int(ncount) Learn(int vector[], int length, int category);
	6.3 Int(nsr) BestMatch(int vector[], int length, int* distance, int* category, int* nid);
	6.4 Int(responseNbr) Classify(int vector[], int length, int K, int distance[], int category[], int Nid[]);

	7 Loading and Retrieval of neurons’ content
	7.1 Int(ncount) CommittedNeurons();
	7.2 void ReadNeuron(int neuronID, int context, int model[], int aif, int minif, int category);
	7.3 Int(ncount) ReadNeurons(int *neurons);
	7.4 Int(ncount) WriteNeurons(int *neurons, int ncount);
	7.5 Int(ncount) SaveNeurons(char *filename);
	7.6 Int(ncount) LoadNeurons(char *filename);
	7.7 Int(ncount) GetNeuronsInfo(int* MaxContext, int* MaxCategory)
	7.8 void SurveyNeurons(int Context, int CatHisto[], int CatDegHisto[], int MaxAIFHisto[])

	8 Vector Batch Processing
	8.1 Supervised Batch Learning
	8.1.1 int LearnVectors(int *vectors, int vectNbr, int vectLen, int *categories, bool ResetBeforeLearning, bool iterative);

	8.2 Unsupervised Batch Learning
	8.2.1 int BuildCodebook(int *vectors, int vectNbr, int vectLen, int CatAllocMode, int InitialCategory, bool WithoutUncertainty);

	8.3 Batch Classification
	8.3.1 void RecognizeVectors(int *vectors, int vectNbr, int vectLen, int K, int *distances, int *categories, int *nids);

	9 Advanced Functions
	9.1 Register Transfer Level functions
	9.1.1 int Write(unsigned char module, byte reg, int data);
	9.1.2 int Read(unsigned char module, byte reg);
	9.1.3 int Write_Addr(int addr, int length_inByte, byte data[]);
	9.1.4 int Read_Addr(int addr, int length_inByte, byte data[]);

	9.2 GV Protocol definition
	9.3 Tentative Address Mapping Common to all platforms

	10 Example script
	Step 1: Learn
	Step2: Recognition
	10.1.1 Case of uncertainty, closer to Neuron#1
	10.1.2 Case of uncertainty, equi-distant to Neuron#1 and Neuron#2
	10.1.3 Case of uncertainty, closer to Neuron#2
	10.1.4 Case of unknown

	Step3: Adaptive learning

