

CogniSight SDK
User’s Manual

IMAGE RECOGNITION BASED ON
NEUROMEM NEURAL NETWORKS

Version 5.4.2
Revised 07/01/2019

CogniSight SDK 2

CogniSight SDK is a product of General Vision, Inc. (GV)

This manual is copyrighted and published by GV. All rights reserved. No parts of this work may be reproduced in any
form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems - without the written permission of GV.

For information about ownership, copyrights, warranties and liabilities, refer to the document Standard Terms And
Conditions Of Sale or contact us at HUwww.general-vision.comU.

http://general-vision.com/documentation/GV_StdTermsAndConditionsOfSale.pdf
http://general-vision.com/documentation/GV_StdTermsAndConditionsOfSale.pdf
http://www.general-vision.com/

CogniSight SDK 3

CONTENTS

1 Introduction ... 5
1.1 The NeuroMem neural network .. 5
1.2 CogniPat library .. 6

2 Package Content .. 7
2.1 Supported hardware .. 7
2.2 Files and Folders ... 7
2.3 Image Knowledge Builder software ... 7

3 Library Content .. 9
4 Hardware Interface .. 10

4.1 int Connect(int Platform, int DeviceID); ... 10
4.2 void getNeuronsInfo(int* neuronSize, int* neuronsAvailable) .. 10
4.3 int Disconnect(); ... 10

5 Image management ... 11
5.1 void BufferToCS(unsigned char *imageBuffer, int Width, int Height, int BytesPerPixel) 11
5.2 void GetCSBuffInfo(int *Width, int *Height, int *BytePerPixel) .. 11
5.3 void CSToBuffer(unsigned char *imageBuffer) ... 12

6 Region of Interest (ROI) ... 13
6.1 void Get/SetROI(int Width, int Height) .. 13
6.2 void Get/SetFeat(int FeatID) .. 13
6.3 void Get/SetFeatParams(int FeatID, int Normalize, int Minif, int Maxif, int Param1, int Param2) 14
6.4 void SizeSubsample(int Width, int Height, int Monochrome, int KeepRatio); ... 14
6.5 Int(length) GetFeature(int Left, int Top, int *Vector) .. 14
6.6 int LearnROI(int Left, int Top, int Category) ... 15
6.7 Int(nsr) BestMatchROI(int Left, int Top, int *distance, int *category, int *nid) ... 15
6.8 int ClassifyROI(int Left, int Top, int K, int *distances, int *categories, int *nids) 16
6.9 Example of a single ROI manipulations .. 17
6.10 Multiple ROIs manipulations .. 17

6.10.1 Multiple ROIs, Multiple features ... 17
6.10.2 Same ROI, Multiple features ... 18

7 Feature extractions .. 20
SubSample ... 20
7.1 Histograms ... 21
7.2 Horizontal, Vertical or Composite Profiles ... 21
7.3 Custom feature extraction ... 22

8 Regions of Scan (ROS) .. 23
8.1 void SetROS(int Left, int Top, int Width, int Height) .. 24
8.2 void GetROS(int *Left, int *Top, int *Width, int *Height).. 24
8.3 Int(vectorNbr) GetROSVectors(int stepX, int stepY, unsigned char *Vectors, int *VLength) 24
8.4 int LearnROS(int stepX, int stepY, int category) ... 24
8.5 int BuildROSCodebook(int stepX, int stepY, int CatAllocMode) ... 24
8.6 int FindROSObjects(int stepX, int stepY, int skipX, int skipY, int *Xpos, int *Ypos, int* distance, int*
category, int* nid) .. 25
8.7 int FindROSAnomalies(int stepX, int stepY, int MaxNbr, int *Xpos, int *Ypos) ... 25
8.8 int MapROS(int stepX, int stepY, int *CatMap, int *DistMap, int *NidMap) ... 26

9 CogniSight Project Files ... 27
9.1 int SaveProject(char *filename) ... 27
9.2 int LoadProject(char *filename) ... 27
9.3 Header details .. 28

10 Building a multiple Experts system ... 29
10.1 Assigning a context value to an expert .. 29

CogniSight SDK 4

10.2 Using Context 0 .. 30
10.2.1 Example #1 .. 30
10.2.2 Example #2 .. 30

10.3 Saving projects based on multiple experts .. 30
11 Appendix B: Tutorial, Hints and Tips .. 31

11.1 What if an object appears at different scale factors? .. 31
11.2 Surface Inspection .. 32

CogniSight SDK 5

1 INTRODUCTION

The CogniSight SDK is a software development kit for image learning and recognition powered by a single or multiple
NeuroMem neural networks. It can address many applications in image, movie and video analytics and be deployed
in systems ranging from smart photocell, consumer and professional cameras, industrial vision systems, etc.

LEARN

- Learn objects, textures or scenes by example using single or multiple experts
- Autonomous learning of textures for classification and anomaly detection
- Can learn raw data and signatures extracted from images, video frames, but also

audio sound, MEMS, and more adding robustness to the recognition with
additional contextual information

- Knowledge can be saved and restored. Tuned and enriched over time
- Build dictionaries of sparse codes autonomously to generate synthetic

description of image content

RECOGNIZE

- Search and enumerate objects in an image or given regions
- Build descriptors of recognized Visual Objects
- Find novelties and anomalies in an image in an image or given regions
- Track single and multiple targets in a video sequence
- Generate meta data describing objects and textures, their locations, density,

categories, and more
- Report uncertainties which is essential to improve accuracy and reduce mistakes
- Find and quantify discrepancies between an image and a reference template

TRANSFORM

- Segment an image into significant regions
- Generate maps showing the spatial distribution of objects or matching patterns

per category, or confidence level
- Extract the saliency within an image
- Generate disparity map between two stereoscopic images
- Compress an image

1.1 The NeuroMem neural network

The NeuroMem network allows to model reference objects or patterns using a library of predefined feature
extractions suitable for color, shape, and texture characterization. To increase accuracy, multiple experts can be
defined to classify objects based on different features and therefore complement one another and waive
uncertainties if any. The final decision can be made through a rule-based decision or another feed-forward
NeuroMem network trained to consolidate the responses of the multiple experts. Another unique capability of a
NeuroMem expert for surveillance, predictive maintenance and many other applications is to report when an object
or pattern is not recognized.

The CogniSight SDK comes with a simulation of the NeuroMem network (1024 neurons per default), but to really
benefit from the performance of a NeuroMem digital network it can interface to NeuroMem Smart hardware.

CogniSight SDK 6

1.2 CogniPat library

The CogniSight SDK is developed on top of
the CogniPat SDK and therefore it also
includes pattern learning and recognition
functions which are agnostics to data
types. This means that you can extract
custom features from your images, but
also waveforms, text, etc. These functions
are described in the CogniPat_SDK
manual.

http://www.general-vision.com/documentation/TM_CogniPat_SDK.pdf
http://www.general-vision.com/documentation/TM_CogniPat_SDK.pdf

CogniSight SDK 7

2 PACKAGE CONTENT

2.1 Supported hardware

The CogniSight SDK is a Dynamic Link Library which interfaces to a chain of NeuroMem neurons for image learning,
classification, knowledge saving and restore. Several versions of the DLL exist with hardware specific drivers
necessary to communicate with the selected platform:

CogniSight_NeuroShield Cypress USB serial driver (and simulation if board not found)
CogniSight_NeuroStack FTDI USB driver for NeuroStack (and simulation if board not found)
CogniSight_Simu Cycle accurate simulation of the NeuroMem network of 1024 neurons

All DLLs have the same entry points, so they are fully interchangeable. This means that an application developed
with the CogniSight SDK can run on all the compatible platforms by simply changing the DLL linked to the application.

The selection of the CogniSight DLL is made as follows depending on the programming environment:

 Location of the CogniSight DLL Location of the wrapper
C++ CogniSight_SDK\bin Link CogniSight.lib to Project/Properties/Linker/Input

(declared in C++ project)
C# CogniSight_SDK\bin CogniSight_SDK\CogniSight.cs
MatLab CogniSight_SDK_MatLab\bin CogniSight_SDK_MatLab\CogniSightClass.m
LabVIEW CogniSight_SDK_LV\bin CogniSight_SDK_LV\CogniSight VIs

2.2 Files and Folders

- Bin folder

o CogniSight_Simu.dll, CogniSight_NSnK.dll, CogniSight_NeuroShield.dll
o CogniSight.h Header defining the entry points to the DLL and specific to image handling
o CogniPat.h Header defining the entry points to the DLL and agnostic to data type
o CogniSight.cs Class defining the entry points to the DLL for C# interface
o CogniSightClass.m Class defining the entry points to the DLL for MatLab interface

- Examples folder
o Examples are provided to helps understand how to use the neurons to learn and recognize visual

objects or events.

2.3 Image Knowledge Builder software

The CogniSight SDK is delivered with a standard version of the Image Knowledge Builder (IKB) so you can experiment
with a variety of learning and recognition methods on your own images prior to programming your application with
the SDK.

IKB is entirely developed with the CogniSight library. The current version lets you use the neurons to build a
recognition engine based on single type of feature extraction at a time. However, its user interface lets you easily
evaluate and compare different features and settings while reusing the same training sets (images and annotations).

CogniSight SDK 8

CogniSight SDK 9

3 LIBRARY CONTENT

The CogniSight library manipulated the following data types:
- Images (input) and Maps (output)
- Region of Interest or ROI
- Region of Search or ROS

A Region Of Interest (ROI) is the primitive area to learn or recognize. It can be a discrete object, part of an object, a
significant feature in a scene, a patch of texture, etc.

From the pixel values inside an ROI, the CogniSight engine
extracts a signature. This signature becomes the feature vector
learned or recognized by the neurons. The CogniSight API
includes a selection of pre-defined feature extractions.

The ROI Properties and Methods are described chapter 6.

The Region of Scan (ROS) is the area to learn or recognize through the “aperture” of a given ROI and using the
knowledge of the neurons. It is usually associated to scanning parameters including step xy and type of displacement.

The ROS properties and Methods are described
Chapter 7.

CogniSight SDK 10

4 HARDWARE INTERFACE

4.1 int Connect(int Platform, int DeviceID);

Establishes communication with your NeuroMem platform and if applicable a specific DeviceID. This function returns
0 if the connection is successful.

Platform code DeviceID
0= Simulation of NeuroMem neurons Reserved. Default is 0.
1=NeuroMem hardware associated to the
CogniSight_xyz.dll linked to your application.

Reserved. Default is 0.

The selection of the CogniSight_xyz.dll is made as follows depending on the programming environment:

 Location of the CogniSight DLL Location of the wrapper
C++ CogniSight_SDK\bin Link CogniSight.lib to Project/Properties/Linker/Input

(declared in C++ project)
C# CogniSight_SDK\bin CogniSight_SDK\CogniSight.cs
MatLab CogniSight_SDK_MatLab\bin CogniSight_SDK_MatLab\CogniSightClass.m
LabVIEW CogniSight_SDK_LV\bin CogniSight_SDK_LV\CogniSight VIs

The Connect function also detects the number of neurons available in the selected platform and clears their content.
Its execution is necessary to size the network if the hardware allows for an expansion of the network and takes
approximately 1 second per thousand neurons. The network size can then be read with the getNetworkInfo function.

4.2 void getNeuronsInfo(int* neuronSize, int* neuronsAvailable)

Read the specifications of the silicon neurons:
- neuronSize, memory capacity of each neuron in byte
- neuronsAvalaible, number of neurons available

The number of neurons available is returned by the Connect function in the case of a platform with fixed capacity,
and CountNeuronsandRset in the case of a platform with variable capacity.

4.3 int Disconnect();

Closes the communication with the current device.

CogniSight SDK 11

5 IMAGE MANAGEMENT

When an image is loaded from an image file or a movie file, it must be transferred to the CogniSight image memory
frame, so the engine can access the pixel values for feature extraction, learning and recognition.

At the time of the transfer, you must define the dimensions of the CogniSight memory frame: Width, Height and
Byte-Per-Pixel (bpp). In the case of a monochrome plane, each byte represents the grey level intensity of a pixel. In
the case of a color plane three consecutive bytes represent the succession of R, G, B intensities of a pixel.

- The CogniSight memory frame can be used to store the entire source image or only a region of the source image.

In the latter case, you will simply have to remember that recognized locations reported by the CogniSight engine
will have the upper-left corner of this region as point of origin.

- The CogniSight memory frame can be used to store the RGB information of the pixels, if applicable, or only their

grey level information. Indeed if it is known that the neurons are to be trained on a monochrome feature, this
will optimize memory allocation and processing speed without preventing you to display the original color image
in your graphical interfaces.

5.1 void BufferToCS(unsigned char *imageBuffer, int Width, int Height, int
BytesPerPixel)

Load a pixel array into a memory frame of the CogniSight workspace. Depending on your application, the byte array
can be a full image, a particular frame in a movie file, a digitized video frame, or a user-defined region within the
above mentioned. If the byte array represents a color image and BytesPerPixels value is 3, the function expects an
imageBuffer with interlaced red, green, blue pixel values.

imageBuffer is a byte array with length equal to the product (Width * Height * Bytes Per Pixel).

If the array represents a monochrome image or portion of a monochrome image, it is a series:
Pixel[0], Pixel[1], …Pixel[Width], Pixel[Width+1],…Pixel[Width * Height].

If the array represents a color image or portion of a color image, it is a series:
PixelR[0], PixelG[0], PixelB[0], PixelR[1], PixelG[0], PixelB[0], …PixelR[Width * Height], PixelG[Width * Height],
PixelB[Width * Height].

5.2 void GetCSBuffInfo(int *Width, int *Height, int *BytePerPixel)

Reads the parameters Width, Height and BytePerPixel describing the current CogniSight memory frame.

CogniSight SDK 12

5.3 void CSToBuffer(unsigned char *imageBuffer)

Read the CogniSight memory frame and returns it as a byte array. The byte array must be sized to at least Width *
Height * BytePerPixel. These three values can be retrieved using the function CSBuffInfo parameters. This function
can be useful to retrieve an image which was directly acquired on a compatible hardware with on-board sensor.

CogniSight SDK 13

6 REGION OF INTEREST (ROI)

A Region Of Interest (ROI) is the primitive area to learn or recognize. It can be a discrete object, part of an object, a
significant feature in a scene, a patch of texture, etc. From the pixel values inside an ROI, the CogniSight engine
extracts a signature. This signature becomes the feature vector learned or recognized by the neurons. The CogniSight
API includes a selection of pre-defined feature extractions.

6.1 void Get/SetROI(int Width, int Height)

Read or Define the nominal width and height of the current ROI.

6.2 void Get/SetFeat(int FeatID)

Read or Define the feature extraction method to apply to the current ROI.

The CogniSight SDK offers a set of common feature extractions listed below. They are simple but convey good
discrimination capabilities when used in conjunction with the powerful NeuroMem RBF classifier. Custom features
can also be extracted from an ROI, as described in a next chapter.

Pre-defined feature extractions:
0=GreySubsample
1=GreyHisto
2=GreyHistoCumul
3=ColorSubsample
4=ColorHisto
5=ColorHistoCumul
6= Composite profile
7= Horizontal profile
8= Vertical profile

The selection of the feature extraction method does not have to be necessary a “color” feature because an image is
a 24-bit color image. It must rather be a discriminating characteristic for the targeted objects and application.

For example, if your application consists of verifying the alignment of an object by detecting that its edges, the color
information might be irrelevant and a grey level subsample sufficient to detect aligned and misaligned patterns.

CogniSight SDK 14

Discarding the color information will eliminate unnecessary variability and allow the calculation of a very simple
feature with less data compression.

6.3 void Get/SetFeatParams(int FeatID, int Normalize, int Minif, int Maxif, int
Param1, int Param2)

Each feature extraction method (FeatID) uses 3 mandatory parameters and two optional parameters:

- Normalize Flag indicating if the amplitude of the feature vector shall be normalized between [0-255]
- Minif Minimum influence field (for any upcoming training)
- Maxif Maximum influence field (for any upcoming training)
- Param1 1st parameter of the feature extraction (if applicable)
- Param2 2nd parameter of the feature extraction (if applicable)

FeatID Description Param1 Param2
0 Monochrome subsample, or average intensity of up to

256 blocks fitting inside the ROI
Block width(*) Block height(*)

1 Grey histogram, or the number of pixels per 256 grey-
level values.

n/a n/a

2 Grey histogram cumulative n/a n/a
3 Color subsample, or average Red, Green and Blue

intensities of up to 85 blocks fitting inside the ROI
Block width(*) Block height(*)

4 Color histogram, or sequence of the Red, Green and Blue
histograms, each of 85 values.

n/a n/a

5 Color histogram cumulative n/a n/a
6 Composite profile n/a n/a
7 Horizontal profile n/a n/a
8 Vertical profile n/a n/a

(*) Refer to the Chapter Feature Extractions for more details.

6.4 void SizeSubsample(int Width, int Height, int Monochrome, int KeepRatio);

Calculates Param1 and Param2 for the extraction of the subsample, whether monochrome (featID=0) or color
(featID=3). These 2 parameters are the width and heights of the 256 square blocks fitting inside the ROI. Their values
can be read using the GetFeatParams function.

(*) Refer to the Chapter Feature Extractions for more details.

6.5 Int(length) GetFeature(int Left, int Top, int *Vector)

Returns the feature vector extracted from the ROI at the (X,Y) location in the image.

The type of feature is defined by the last execution of the SetFeature function.

CogniSight SDK 15

The output vector is composed of “length” components to the neurons. Note that the function takes an array of int,
but the upper byte is expected to be equal to 0 since the existing NeuroMem chips are limited to byte array
memories.

6.6 int LearnROI(int Left, int Top, int Category)

Learns the feature vector extracted from the ROI at the (Left, Top) location in the image as Category. Category can
range between 1 to 32766. A category of 0 can be used to teach a counter example or a background example.

The function returns the number of committed neurons (ncount). Note that this number does not increase
necessarily after each execution of the Learn function. Ncount will increase only if the vector and its associated
category represents novelty to the commited neurons.

Considerations before calling this function:
- Change the Global Context Register to match the context represented by the input vector
- Change the Min Influence Field and Max Influence Field
- Make sure the network is in RBF mode (Write NSR 0).

o The KNN mode is not appropriate for learning since it will create a new neuron each time a new
category value is taught and do nothing more. The RBF mode must be used to build a decision space
modeling multiple category and also with areas of “unknown” or “uncertainties” which are essential
for true artificial intelligence with voluntary redundancy for accuracy, context awareness, hypothesis
generation and more.

o The Save and Restore mode is not compatible with the learning mode.

6.7 Int(nsr) BestMatchROI(int Left, int Top, int *distance, int *category, int *nid)

Recognizes the feature vector extracted from the ROI at the (Left, Top) location in the image and reports the
distance, category and neuron identifier of the closest neuron.

The function returns the Network Status Register and its lower byte can be decoded as follows:
- NSR=0, the vector is not recognized by any neuron (UNKnown)
- NSR=8, the vector is recognized, and all firing neurons agree with its category (IDentified)
- NSR=4, the vector is recognized but the firing neurons disagree with its category (UNCertain)
- NSR=32, the network is in KNN mode

Distance represents the distance value between vector and the firing neuron with the closest model stored in its
memory (i.e. top firing neuron). Distance is calculated by the neurons according to the Norm assigned to the neuron
at the time it was committed (bit7 of the Context register). If no neuron fires, Distance=0xFFFF.

Category of the top firing neuron. It can range between 1 and 32767. Bit 15 is always set to 0 to mask the
Degenerated flag. If no neuron fires, Category=0xFFFF.

NID is the identifier of the top firing neuron. NID can range between 1 and the number of neurons available in the
network. If no neuron fires, Identifier=0.

Considerations before calling this function:
- Change the Global Context Register to match the context represented by the input vector
- Change the Network Status Register (NSR) to turn ON/OFF the KNN classifier, or to turn ON/OFF the Save-and-

Restore mode.

CogniSight SDK 16

Considerations after calling this function:
- Change the Network Status Register (NSR) to turn OFF the KNN classifier, if selected, prior to the next learning

operation.
- If the NSR indicates a case of uncertainty (value 4 or 36), you can immediately execute a series of Read(DIST) +

Read(CAT) to obtain the response of the next closest firing neurons, and this until you read a DIST=0xFFFF.

6.8 int ClassifyROI(int Left, int Top, int K, int *distances, int *categories, int
*nids)

Classifies the feature vector extracted from the ROI at the (Left, Top) location in the image and reports the distance,
category and neuron identifier of the K closest neurons, if any.

The function returns the number of firing neurons or K whichever is the smallest. For example, if K=3, but only 2
neurons fire, the function returns, the value 2.

Distance represents the distance value between vector and the firing neuron with the closest model stored in its
memory (i.e. top firing neuron). Distance is calculated by the neurons according to the Norm assigned to the neuron
at the time it was committed (bit7 of the Context register). If no neuron fires, Distance=0xFFFF.

Category of the top firing neuron. It can range between 1 and 32767. Bit 15 is always set to 0 to mask the
Degenerated flag. If no neuron fires, Category=0xFFFF.

NID is the identifier of the top firing neuron. NID can range between 1 and the number of neurons available in the
network. If no neuron fires, Identifier=0.

Considerations before calling this function:
- Change the Global Context Register to match the context represented by the input vector
- Change the Network Status Register (NSR) to turn ON/OFF the KNN classifier, or to turn ON/OFF the Save-and-

Restore mode.

Considerations after calling this function:
- Change the Network Status Register (NSR) to turn OFF the KNN classifier, if selected, prior to the next learning

operation.

CogniSight SDK 17

6.9 Example of a single ROI manipulations

6.10 Multiple ROIs manipulations

If an application must inspect different ROIs per part, it shall store the definition of the different ROIs and make sure
to change the Global Context of the neurons when switching between ROIs. IN addition to the simple examples
below, please refer to the last Chapter of this manual: Building a Multiple Expert system.

6.10.1 Multiple ROIs, Multiple features

ROI #1 = Filling level of a bottle

Size = 64 x 8
FeatID = Vertical profile
Category= acceptable, too_low, too_high
Will be assigned to Context 1

ROI#2 = Front label must be good

Size = 128 x 128
FeatID = SubsampleRGB
Category= acceptable, slanted, scratched, folded
Will be assigned to Context 2

SetROI(Width1, Height1)
SetFeatParams(FeatID1, Norm1, Minif1, Maxif1, Param11, Param12);
SetContext(1, 2, 0x4000)
MoveROI(Left1, Top1)
RecoROI((Left1, Top1, out Distance1, out Category1)
If (Category1 != acceptable) return(“Fail”);

CogniSight SDK 18

SetROI(Width2, Height2)
SetFeatParams(FeatID2, Norm2, Minif2, Maxif2, Param21, Param22);
MoveROI(Left2, Top2)
SetContext(2, 2, 0x4000)
RecoROI(Left2, Top2, out Distance2, out Category2)
f (Category2 != acceptable) return(“Fail”);
else retun(“Pass”)

6.10.2 Same ROI, Multiple features

The classification of the ROI can be based on single or multiple features (or signatures). In the case of multiple
features, the context of the neurons must be changed for each type of feature. The context value can be assigned
to a feature identification number for example starting at the value 1 (value 0 is reserved to activate neurons of all
contexts at once). For example, the feature subsample can be assigned to context 1 and the feature histogram can
be assigned to context 2. The proper context must be activated prior to broadcasting the corresponding feature
vector.

The following example illustrates how to learn and recognize objects based on two different features for more
robustness.

Let’s take the example of character recognition.

Combining the use of a subsample vector and a histogram vector can help discriminate certain hand written digits.

In this case, two sub-networks of neurons will be trained to recognize the same input objects based on 2 feature
vectors. The subsample can be assigned to the context 1 and the histogram to the context 2. The change of context
must occur prior to the functions LearnROI, RecognizeROI and FindROSObject, MapROS. The change of feature is
executed by the SetFeatParams function.

Example1: Learn a same example using 2 feature vectors
NeuroMem.GCR=1
SetFeatParams(FeatID1, norm1, minif1, maxif1, FeatParam11, FeatParam12, FeatParam13, FeatParam14)
LearnROI(X,Y,Cat1)
NeuroMem.GCR=2
SetFeatParams(FeatID2, norm2, minif2, maxif2, FeatParam21, FeatParam22, FeatParam23, FeatParam24)
LearnROI(X,Y,Cat1)

Example2: Recognize a same example using 2 feature vectors
NeuroMem.GCR=1
SetFeatParams(FeatID1, norm1, minif1, maxif1, FeatParam11, FeatParam12, FeatParam13, FeatParam14)
[Cat1out, Dist1out]=RecoROI(X,Y)
NeuroMem.GCR=2

CogniSight SDK 19

SetFeatParams(FeatID2, norm2, minif2, maxif2, FeatParam21, FeatParam22, FeatParam23, FeatParam24)
[Cat2out, Dist2out]=RecoROI(X,Y)
If (Cat1out==Cat2out) printf(“double score!”)

CogniSight SDK 20

7 FEATURE EXTRACTIONS

SubSample

Subsample is a vector which appends the average intensity of blocks of pixels extracted from the region of interest.
The blocks are all the same size, but not necessarily square. They are surveyed in a raster displacement and their
average intensity is assembled into vector.

The Subsample and SubSampleRGB functions take to input
parameters which describe the size of the internal blocks to
average, BWidth and BHeight as described below.

- The pixels of block #i are averaged to produce the ith

component of the signature vector.
- The relationship between the four parameters is :

o NWIDTH= n*BlockWIDTH
o NHEIGHT= m*BlockHEIGHT
o n*m <=256 in the case of a monochrome subsample
o n*m <=85 in the case of an R+G+B subsample

The feature called Subsample extracts the
average of the intensity value of each block
regardless if the image is monochrome or
color. The region must contain less than 256
blocks so the output vector fits in the 256
bytes of memory of the neurons

Since the SubSample function generates 1
average value per block and the final vector
can only have 256 values, the blocks must be
sized such that their number inside the ROI
is less than or equal to 256.

Feature vector reconstructed as a
monochrome image

The feature called SubsampleRGB extracts
the average of the Red, Green and Blue
intensities of each block in the ROI, so three
average values per block. The ROI must
contain less than 85 blocks so 3 x 85 values
fits in the 256 bytes of memory of the
neurons.

Since the SubSampleRGB function generates
3 average value per block and the final
vector can only have 256 values, the blocks
must be sized such that their number inside
the ROI is less than or equal to 85.

Feature vector reconstructed as an
RGB image

CogniSight SDK 21

7.1 Histograms

Histogram is a vector which gives the
distribution of the grey-level values in the
region of interest. It indicates the number of
shades in the ROI, the presence of noisy
pixels and more.
The amplitude of the histogram is scaled
down to a byte value by multiplying it by the
ratio (255/N) with N, the number of pixels in
the ROI.

HistoCumul or cumulative histogram is a
mapping of the standard histogram which
counts the cumulative number of pixels in all
of the bins up to the specific bin.

Cumulative histogram

HistogramRGB is a vector which gives the
distribution of the Red, Green and Blue
intensities in the region of interest. It is
assembled as a series of 3 histograms of 85
bins each representing 85 bins for the Red,
85 bins for the Green and 85 bins for the
Blue.

HistoCumulRGB or cumulative color
histogram is a mapping of the standard
histogram which counts the cumulative
number of pixels in all the bins up to
the specific bin.

RGB Histogram

7.2 Horizontal, Vertical or Composite Profiles

The average intensity along a column or
row of pixels, or both appended in a same
feature vector. The composite profile can
be helpful to classify the alignment of
objects. The vertical and horizontal profiles
to classify edges and geometric transitions.

CogniSight SDK 22

7.3 Custom feature extraction

If you wish to develop a feature extraction method which is not provided in the CogniSight SDK, it can be grafted in
your application using the functions of the CogniPat SDK(*) as described in the table below:

 Built-in feature extraction Custom feature extraction
Pixel data Image source must be transferred

to the CS image plane with the
function BufferToCS

Bitmap of the image source , or the same buffer as
the one used by the function BufferToCS

Feature extraction SetFeat
SetFeatParams

CustomFeat (X, Y), your function manipulating the
pixel data
FeatVector, your output vector formatted as a byte
array of maximum length 256

Learn locally LearnROI (X, Y) FeatVector= CustomFeat(X, Y)
Learn(FeatVector)

Recognize locally ClassifyROI (X,Y) FeatVector= CustomFeat(X, Y)
Classify(FeatVector)

Learn an area SetROS
LearnROS ()

For each X,Y over the ROS area
FeatVector= CustomFeat(X, Y)
Learn(FeatVector)

Recognize an area SetROS
FindROSObjects ()

For each X,Y over the ROS area
FeatVector= CustomFeat(X, Y)
Classify (FeatVector)

(*) The CogniSight SDK is developed on top of the CogniPat SDK and therefore it also includes pattern learning and
recognition functions which are agnostics to data types. This means that you can extract custom features from your
images, but also waveforms, text, etc.

https://www.general-vision.com/documentation/TM_CogniPat_SDK.pdf

CogniSight SDK 23

8 REGIONS OF SCAN (ROS)

The Region of Scan (ROS) is the area to learn or recognize through the “aperture” of a given ROI and using the
knowledge of the neurons. It is usually associated to scanning parameters including step xy and type of displacement.

Learning an ROS can involve supervised and semi-supervised functions.

Surveying a Region of Search can produce multiple types of outputs.

- Visual Objects (VO) are a list of identified locations with their recognized category as a result of a Search over

a region of scan. They can be presented as an array or in Transform images showing their spatial distribution
based on attributes such as their category or their similarity factor.

- A Map (MAP) is a transform image of a Region of Scan reporting the spatial distribution of the recognized

objects in term of category value, distance/confidence value and neuron identifiers. The dimension of the map
is the dimension of the ROS divided by the selected scanning step.

CogniSight SDK 24

Note that if the CogniSight memory frame only represents a portion [Left, Top, Right, Bottom] of the original image,
the recognized locations reported by the Find and Map functions have the position [Left, Top] as point of origin. You
will have to translate them back to the referential of the source image if applicable to your GUI.

8.1 void SetROS(int Left, int Top, int Width, int Height)

Defines the current Region Of Search which can range from the size of the current ROI to the entire image.

This function does not verify the consistency of the input parameters and, in particular, if the ROS extends outside
the image stored in the CogniSight memory buffer. The functions applying to the ROS do not verify consistency either
and assume that values are correct.

8.2 void GetROS(int *Left, int *Top, int *Width, int *Height)

Reads the current Region Of Search

8.3 Int(vectorNbr) GetROSVectors(int stepX, int stepY, unsigned char *Vectors,
int *VLength)

Extracts the list of feature vectors extracted from the Region of Search scanned in a raster displacement with
horizontal stepX and vertical stepY. This function is useful to export feature vectors for further manipulation with
the CogniPat SDK for example, or for backup and traceability purposes.

VLength reports the length of the feature vectors which is function of the featID and its parameters in use.

Vectors is an array with a dimension of VLength times Number_of_Steps covered during the scanning.

The function returns the number vectors.

8.4 int LearnROS(int stepX, int stepY, int category)

Learns the feature vectors extracted from the Region of Search scanned in a raster displacement with horizontal
stepX and vertical stepY. All these vectors are assigned the same user-defined category.

8.5 int BuildROSCodebook(int stepX, int stepY, int CatAllocMode)

Learns the feature vectors extracted from the Region of Search scanned in a raster displacement with horizontal
stepX and vertical stepY. All the vectors recognized as novelty by the neurons are automatically learned and
assigned a category value as defined by the CatAllocMode parameter.

CatAllocMode: Defines which category to assign to a block which is not recognized by the currently committed
neurons:

o 0: constant value
o 1: auto-increment by 1

CogniSight SDK 25

o 2: maximum delta between the vectLen components
o 3: average value of the vectLen components
o 4: index of the vector committing the neuron. This information can be used to retrieve the XY origin of

the vector in an image, or else.

Note that the function does not clear the knowledge and uses current Minif, Maxif, GCR. It returns the number of
committed neurons.

For an example on how to build and use a codebook, refer to the Appendix Surface Inspection.

8.6 int FindROSObjects(int stepX, int stepY, int skipX, int skipY, int *Xpos, int
Ypos, int distance, int* category, int* nid)

Scan the Region of Search and report each recognized location.
The report consists of five output arrays Xpos, Ypos, distance, category, nid describing the recognized objects.

The scanning is made in a raster displacement with horizontal stepX and vertical stepY.

Xpos and Ypos are the center location of the recognized regions of interest.
Distance, category and neuron identifier are the response of the 1st firing neuron, that is with the closest match.

The skipX and skipY options can accelerate the scanning process but must be used cautiously since positive
recognition may be missed. If stepX is set to 1, a positive identification at a position X will set the next inspection at
a positon X + StepX. Similarly, if stepY is set to 1, any positive identification along a line Y will set the inspection of
the next line of pixels at a positon Y + StepY.

The output arrays must be sized to their maximum possible length which is 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 and corresponds to a case

where an object is recognized at each scanned position.

Considerations before calling this function:
- Verify that the ROI and FeatParams are the proper ones
- Verify that the ROS is the proper one
- Size the 5 output arrays [Xpos, Ypos, Distance, Category, Nid] to a length of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

- Change the Global Context Register to match the context represented by the input vector

8.7 int FindROSAnomalies(int stepX, int stepY, int MaxNbr, int *Xpos, int *Ypos)

Scan the Region of Search and report each location which is not recognized.

The scanning is made in a raster displacement with horizontal stepX and vertical stepY.
Xpos and Ypos are the center location of the region of interest

The output arrays must be sized to their maximum possible length which is 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 and corresponds to a case

where no object is recognized at each scanned position.

Considerations before calling this function:
- Verify that the ROI and FeatParams are the proper ones

CogniSight SDK 26

- Verify that the ROS is the proper one
- Size the 5 output arrays [Xpos, Ypos, Distance, Category, Nid] to a length of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

- Change the Global Context Register to match the context represented by the input vector

8.8 int MapROS(int stepX, int stepY, int *CatMap, int *DistMap, int *NidMap)

Builds the lists of the categories, distances and neurons’ identifiers recognized at each step of a raster
displacement within the Region of Search.

The three output have the same dimension L:
- L is the number of inspected positions of the ROI within the ROS
- L is a function of the selected StepX and StepY, and distance from the

center of the ROI to the edges of the ROS
- These positions are within the shaded rectangle shown to the right
- L= = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

The values of the CatMap array can range between [0,32,364].
The values of the DistMap array can range between [0, 65535].
The values of the NidMap array can range between [0, Number of
neurons available].

The function returns MapWidth or the number of samples representing
the width of the transform image. This value is used to reconstruct the
Transform image.

The 1D output arrays can be reshaped as 2D arrays. Their interpretation may require conversion into pseudo-color
images (8-bit or higher) and displayed with appropriate color lookup table.

- The display of CatMap as 2D images show the spatial distribution of the categories in the image. If the

application manages more than 256 categories of objects for the selected context, the values may require to
be mapped down to a range of [0,255].

- DistMap reveals the distribution of the recognized areas per level of confidence. The color palette should
associate a low distance value to a high confidence factor (like red color for high confidence) and vice and
versa (like blue for a poor confidence). The distance values being much greater than 255, they should be
scaled down using clipping, logarithmic or other interpolations.

- Several color lookups (CLUT) are supplied in the Project folder.

CogniSight SDK 27

9 COGNISIGHT PROJECT FILES

A CogniSight project file includes all the necessary information (1) to apply a knowledge for the recognition of ROS
in still or live images, and (2) to expand the knowledge if necessary by learning additional examples using the correct
ROIs and associated feature extractions.

The CogniSight Project format described below is compatible with the Image Knowledge Builder and all the
CogniSight libraries and CogniSight based applications.

9.1 int SaveProject(char *filename)

Saves to file the knowledge stored in the neurons as well as the current ROI size, the feature extraction and its
parameters and the settings of the neural network (maxif, minif);

The function returns the number of saved neurons (ncount) after the upload to the NeuroMem chip(s).

The format of the file is composed of a header followed by the neurondata or an array describing the content of the
“neurons”:

Header information

- ROI size
- Feature ID
- Feature Parameters
- ROS coordinates

NeuronData is an array of (neuronSize + 4) integers as follows:

- NeuronData[0]= NCR, Neuron Context Register
- NeuronData[1,NeuronSize] = neuron’s memory or NeuroSize components
- NeuronData[NeuronSize+1]= AIF, Active Influence Field
- NeuronData[NeuronSize+2]= MINIF, Minimum Influence Field
- NeuronData[NeuronSize+3]= CAT, Category

9.2 int LoadProject(char *filename)

Restores from file the content of the neurons as well as the current ROI size, the feature extraction and its
parameters and the settings of the neural network (maxif, minif);

The function returns the actual number of committed neurons (ncount) after the upload to the NeuroMem chip(s).

The format of the file is composed of a header followed by the neurondata or an array describing the content of the
“neurons”:

Header information

- ROI size
- Feature ID
- Feature Parameters
- ROS coordinates

CogniSight SDK 28

NeuronData is an array of (neuronSize + 4) integers as follows:
- NeuronData[0]= NCR, Neuron Context Register
- NeuronData[1,NeuronSize] = neuron’s memory or NeuroSize components
- NeuronData[NeuronSize+1]= AIF, Active Influence Field
- NeuronData[NeuronSize+2]= MINIF, Minimum Influence Field
- NeuronData[NeuronSize+3]= CAT, Category

The CogniSight SDK is developed on top of the CogniPat SDK which includes additional functions to control the
neurons and manipulate data-agnostic vectors. For more information, refer to CogniPat.h header file and the
CogniPat_SDK manual.

Among the most commonly used functions:

- AvailableNeurons
- CommittedNeurons
- ClearNeurons

9.3 Header details

The information of the header is easily retrieved with the GetROI, Get FeatParams and GetROS functions. However
if you want to retrieve the information from the binary file, the header is a series of 4 bytes formatted as
[Module, Register, Data_UpperByte, Data_LowerByte]. The end of the header is marked by four consecutive bytes
set to 0xFF, after which you can access the neuron data.

#define MOD_TOP 0x52 #define GV_VERSION 0x62

#define MOD_NM 0x01 #define NM_LEFT 0x11

#define NM_TOP 0x12
#define NM_NWIDTH 0x13
#define NM_NHEIGHT 0x14
#define NM_BWIDTH 0x15
#define NM_BHEIGHT 0x16
#define NM_RSR 0x1C
#define NM_RTDIST 0x1D
#define NM_RTCAT 0x1E
#define NM_ROIINIT 0x1F

#define MOD_CS 0x10 #define CS_WIDTH 0x81

#define CS_HEIGHT 0x82
#define CS_FEATID 0x83
#define CS_FEATNORMALIZE 0x84
#define CS_FEATMINIF 0x85
#define CS_FEATMAXIF 0x86
#define CS_FEATPARAM1 0x87
#define CS_FEATPARAM2 0x88
#define CS_ROSLEFT 0x89
#define CS_ROSTOP 0x8A
#define CS_ROSWIDTH 0x8B
#define CS_ROSHEIGHT 0x8C
#define CS_STEPX 0x8D
#define CS_STEPY 0x8E
#define CS_SKIPX 0x8F
#define CS_SKIPY 0x90

http://www.general-vision.com/documentation/TM_CogniPat_SDK.pdf

CogniSight SDK 29

10 BUILDING A MULTIPLE EXPERTS SYSTEM

The CogniSight SDK lets you design applications based on multiple experts trained on identical or different ROIs using
identical or different features. These experts can be used to make combinatorial or hierarchical decisions. For
example, an application with a high cost of mistake may require that at least N experts produce a same classification
in order consider the overall response as a positive identification.

The present version of the CogniSight SDK does not manage the definition of multiple expert, so you will have to
save the description of your experts as illustrated below in a file with the format of your choice. The next version
will have this built-in the library.

Example with two experts

Expert #1 = Filling level of a bottle

Size = 64 x 8
FeatID = Vertical profile
Category= acceptable, too_low, too_high
Will be assigned to Context 1

Expert #2 = Front label must be good

Size = 128 x 128
FeatID = SubsampleRGB
Category= acceptable, slanted, scratched, folded
Will be assigned to Context 2

10.1 Assigning a context value to an expert

A context value should be considered as an index to a list of experts.
You can have multiple experts trained on the same images and annotations but using different feature extractions

- Context 1: subsample 32x64 with 2X4 blocks
- Context 2: subsample 32x64 with block 6x32
- Context 3: HistogramRGB

You can have multiple experts trained using a same feature but on different types of images
- Context Zoom 1, Context Zoom 5, Context Zoom 10
- Context Daytime and Context Nighttime

The context is a user-defined index value tying together the nominal size of the ROI, a type of feature, a scale, etc.

The context must be set to the correct value prior to broadcasting a vector. This operation is only necessary if the
vector represents a new dimension (aka a different feature, or ROI size, or image scale, etc.)

The context of a neuron is "frozen" at the time it gets committed. This is equivalent to assigning its index to a list of
experts in use.

CogniSight SDK 30

10.2 Using Context 0

The context 0 is a special value in the sense that it activates all the neurons regardless of their individual context
value.

The context 0 should not be used during learning, except if your application uses only one expert.

10.2.1 Example #1

You train 3 experts called Context Zoom 1, Context Zoom 5, Context Zoom 10, and using the same feature extraction.
At the time of the recognition, you select Context 0 and build a consensus if at the maximum 2 of the experts agree
with the recognized category. For example, you would consider a response as false positive if Context Zoom 1 and
Context Zoom 10 agree, but not Context Zoom 5. The fact that one scale is skipped could be suspicious

10.2.2 Example #2

You train 2 experts Context Daytime and Context Nighttime to recognize a target but activate them both at dawn
and dusk.

10.3 Saving projects based on multiple experts

The present version of the CogniSight SDK does not manage the definition of multiple expert, so you will have to
save the description of your experts as illustrated below in a file with the format of your choice. The next version
will have this built-in the library.

The SaveProject and LoadProject functions save and restore the knowledge of all the experts at once, but only the
definition of the active expert at the time of the save. So, if your application manages multiple experts, it is
mandatory that you save their description and their associated context values in a separate text file.

CogniSight SDK 31

11 APPENDIX B: TUTORIAL, HINTS AND TIPS

11.1 What if an object appears at different scale factors?

The neurons assigned to a given context C and trained to recognize objects with a size W x H will be able to recognize
the same object at different scales provided that the ratio of its primitive blocks remains the same.

If an object is taught using the following settings:
ROI size=rS
Block size=bS
The same neuron will recognize the object viewed at a scale N with the following settings:
ROI size= N x rS
Block size= N x bS

This original image is used to teach an
example of an eye.

ROI 32x32
Block 2x2

Case 1:
Image is zoomed out.
The ROI and block size are both reduced
using the same ratio of ½

 The feature vector is similar to the
one extracted in the original image.

 The neuron trained on the original
image has a good chance to
recognize this vector.

ROI 16x16
Block 1x1

Case2:
Image is zoomed out.
The ROI and block size are kept the same

 The feature vector encodes
different information than the one
extracted in the original image.

 The neuron trained on the original
image has less chance to recognize
this vector.

ROI 32x32
Block 2x2

CogniSight SDK 32

11.2 Surface Inspection

Texture learning is easy with the CogniSight engine. A region of interest can be divided into patches and the neurons
will automatically learn the patches which are significant to describe the texture of the region.

In the example below, the surface inspected is solar glass which features a periodic bumpy pattern. Following is a
series of patches of 16x16 pixels learned by the neurons. If a glass area with good quality is learned by taking
examples of patches at all possible phase and assigning them the “Good” category, the content of the resulting
committed neurons is a description of the good glass texture.

Example patches of 16x16 pixels

The user interface presented below is very simplistic but enough to illustrate how to develop a surface inspection
system with the CogniSight technology. The area selected by the user and outlined in yellow has been learned as a
“Good” texture and this has generated 65 models. The number of models depends on two settings of the learning
operation: the value of the maximum influence field (MAXIF) of the neurons and the scanning step used to extract
the sample patches from the region of interest.

- The higher the step and the smaller the number of samples.
- The smaller the MAXIF, the more models.

The image to the right is supposed to highlight the patches which are not recognized by the CogniSight engine
because they do not match any of the 65 models. In this case, all learned patches are positively identified.

The same remark is true if the region of interest is moved around as shown in the image to
the left.

This is made possible by learning the content of the region using a step of 1 or 2 which allows
to generate representations of the patches of texture at many different phases:

CogniSight SDK 33

If a new image is loaded and shows a significant defect, the neurons will not recognize the
patches at the location of the defect. They appear highlighted in red in the Transform image.

If a defect is not properly identified, a new region limited to patches covering the defect can
be selected with the mouse cursor and learned as a Bad texture. This learning operation will
have the effect to reduce the influence field of the neuron(s) recognizing the patches as good
prior to learning them as counter examples.

	1 Introduction
	1.1 The NeuroMem neural network
	1.2 CogniPat library

	2 Package Content
	2.1 Supported hardware
	2.2 Files and Folders
	2.3 Image Knowledge Builder software

	3 Library Content
	4 Hardware Interface
	4.1 int Connect(int Platform, int DeviceID);
	4.2 void getNeuronsInfo(int* neuronSize, int* neuronsAvailable)
	4.3 int Disconnect();

	5 Image management
	5.1 void BufferToCS(unsigned char *imageBuffer, int Width, int Height, int BytesPerPixel)
	5.2 void GetCSBuffInfo(int *Width, int *Height, int *BytePerPixel)
	5.3 void CSToBuffer(unsigned char *imageBuffer)

	6 Region of Interest (ROI)
	6.1 void Get/SetROI(int Width, int Height)
	6.2 void Get/SetFeat(int FeatID)
	6.3 void Get/SetFeatParams(int FeatID, int Normalize, int Minif, int Maxif, int Param1, int Param2)
	6.4 void SizeSubsample(int Width, int Height, int Monochrome, int KeepRatio);
	6.5 Int(length) GetFeature(int Left, int Top, int *Vector)
	6.6 int LearnROI(int Left, int Top, int Category)
	6.7 Int(nsr) BestMatchROI(int Left, int Top, int *distance, int *category, int *nid)
	6.8 int ClassifyROI(int Left, int Top, int K, int *distances, int *categories, int *nids)
	6.9 Example of a single ROI manipulations
	6.10 Multiple ROIs manipulations
	6.10.1 Multiple ROIs, Multiple features
	6.10.2 Same ROI, Multiple features

	7 Feature extractions
	SubSample
	7.1 Histograms
	7.2 Horizontal, Vertical or Composite Profiles
	7.3 Custom feature extraction

	8 Regions of Scan (ROS)
	8.1 void SetROS(int Left, int Top, int Width, int Height)
	8.2 void GetROS(int *Left, int *Top, int *Width, int *Height)
	8.3 Int(vectorNbr) GetROSVectors(int stepX, int stepY, unsigned char *Vectors, int *VLength)
	8.4 int LearnROS(int stepX, int stepY, int category)
	8.5 int BuildROSCodebook(int stepX, int stepY, int CatAllocMode)
	8.6 int FindROSObjects(int stepX, int stepY, int skipX, int skipY, int *Xpos, int *Ypos, int* distance, int* category, int* nid)
	8.7 int FindROSAnomalies(int stepX, int stepY, int MaxNbr, int *Xpos, int *Ypos)
	8.8 int MapROS(int stepX, int stepY, int *CatMap, int *DistMap, int *NidMap)

	9 CogniSight Project Files
	9.1 int SaveProject(char *filename)
	9.2 int LoadProject(char *filename)
	9.3 Header details

	10 Building a multiple Experts system
	10.1 Assigning a context value to an expert
	10.2 Using Context 0
	10.2.1 Example #1
	10.2.2 Example #2

	10.3 Saving projects based on multiple experts

	11 Appendix B: Tutorial, Hints and Tips
	11.1 What if an object appears at different scale factors?
	11.2 Surface Inspection

