

## **Getting Started with NeuroShield**

NeuroShield is a shield board featuring the NM500 neuromorphic chip with 576 neurons ready to learn and recognize stimuli extracted from any type of sensors including IMU, audio, environmental sensors, bio-signal, video and more.

- SPI interface:
  - For use as a shield with Arduino, Raspberry PI, and other microcontrollers to empower embedded systems with access to a NeuroMem network.
- USB Serial interface
  - For use as a simple USB dongle to empower PC-based applications with access to a NeuroMem network.



NeuroShield and NeuroBrick are products from nepes. The NeuroMem<sup>®</sup> NM500 is a chip manufactured by nepes under license from General Vision Inc. General Vision Inc. is the inventor and owner of the NeuroMem<sup>®</sup> technology.

Download the Board Support package at https://github.com/general-vision/neuroshield

## Contents

| Getting Started with NeuroShield1          |
|--------------------------------------------|
| NeuroShield as a shield with SPI interface |
| NeuroShield for Arduino3                   |
| Connectivity3                              |
| Examples3                                  |
| NeuroShield for Raspberry PI3              |
| Connectivity3                              |
| Examples4                                  |
| NeuroShield for ZYNQ development boards4   |
| Other SPI interfaces4                      |
| NeuroShield as a USB device5               |
| Windows                                    |
| Linux                                      |
| Supplements for Windows OS5                |
| Hardware Specifications                    |
| Pinout and Power Supply6                   |
| Expanding the network                      |

# NeuroShield as a shield with SPI interface

# NeuroShield for Arduino

#### Connectivity



Please note that the NeuroShield does not have a 6-pin ICSP connector and can only receive the SPI signals on its digital Arduino connectors.

Refer to the latest table at <u>https://www.arduino.cc/en/reference/SPI</u> for the SPI pinout per model of Arduino board.

#### Examples

- <u>NeuroMem library</u> establishes communication to the NeuroShield through SPI and gives access to the neurons of the NM500 chip.
- <u>Academic Scripts</u> illustrating how to teach the neurons and query them for simple recognition status, or a best match, or a detailed classification of the K nearest neurons.
- <u>Motion recognition examples</u> using the on-board IMU from Invensense (MPU6050) and the IMU from the Arduino101.
- Video recognition examples using an ArduCAM shield



### NeuroShield for Raspberry PI

### Connectivity



| Raspberry Pi     | Signal    | NeuroShield |
|------------------|-----------|-------------|
| GPIO 39          | GND       | D14         |
| Pin 25 / GPIO    | SPI_EN    | D5          |
| Pin 23 / GPIO 11 | SPI_CLK   | D13         |
| Pin 21 / GPIO 9  | SPI_MISO  | D12         |
| Pin 19 / GPIO 10 | SPI_MOSI  | D11         |
| Pin 24 / GPIO 8  | SPI_NM_CS | D7          |
|                  |           |             |

Do not forget to enable the SPI interface, under Interfacing options (run sudo raspi-config).

### Examples

- <u>NeuroMem library</u> establishes communication to the NeuroShield through SPI and gives access to the neurons of the NM500 chip.
- <u>Academic Scripts</u> illustrating how to teach the neurons and query them for simple recognition status, or a best match, or a detailed classification of the K nearest neurons.
- Video recognition examples using the RaspiCam

# NeuroShield for ZYNQ development boards

A new NeuroShield HDK for ZYNQ7000 development boards allows interfacing to the NeuroMem neurons from the Zynq Processor Subsystem (PS) and/or the Programmable Logic (PL) fabric.



### Package Content:

- NeuroShield embedded system file for Digilent Arty Z7 and Avnet MiniZed (\*.hd file)
- Xilinx SDK standalone project including the NeuroMem API in C/C++ and <u>Academic Script</u> illustrating how to teach the neurons and query them for simple recognition status, or a best match, or a detailed classification of the K nearest neurons.
- Complete Vivado project (\*\* optional use to adapt to your own ZYNQ platform; version 2018.3)

# Other SPI interfaces

NeuroShield can be interfaced to any device supporting an SPI interface. Access to the neurons is made through a simple 10-bytes protocol described in <u>https://www.general-</u><u>vision.com/documentation/TM\_NeuroMem\_Smart\_protocol.pdf</u>.

Example Source code of the primitive SPI\_Connect, SPI\_Read and SPI\_Write can be found in the Board Support Package:

- Arduino\Libraries\Src\NeuroMemSPI.cpp
- Python\GVcommSPI.py
- USB\NeuroMemAPI\lib

### NeuroShield as a USB device

### **Windows**

NeuroShield can be connected to a PC through USB so you can access the neurons from our Knowledge Builder software or develop your own applications using our standard API or SDKs.

- NeuroShield Console Manual (PDF) and video tutorial
- <u>NeuroMem API</u>



#### <u>Linux</u>

The NeuroMem API features C/C++ source code which can be adapted for Linux. Please refer to the Cypress documentation to replace the use of their driver Windows cyusbserial.dll with a native serial API for Linux. <u>http://www.cypress.com/documentation/software-and-drivers/usb-serial-software-development-kit</u>

### Supplements for Windows OS

#### Additional generic tools:

- NeuroMem Knowledge Builder
- CogniPat SDK C++/C#/Python
- CogniPat SDK MatLab
- CogniPat SDK LabVIEW

#### Additional imaging tools:

- Image Knowledge Builder
- CogniSight SDK C++/C#
- CogniSight SDK MatLab
- CogniSight SDK LabVIEW

# **Hardware Specifications**

For more details regarding the hardware, refer to the nepes NeuroShield Hardware Manual

### Pinout and Power Supply



| pin | Description                               |
|-----|-------------------------------------------|
| D13 | SCK                                       |
| D12 | MISO                                      |
| D11 | MOSI                                      |
| D7  | SPI_CS_NMn,                               |
|     | SPI select to access the neurons          |
| D6  | SPI_CS_SDn,                               |
|     | SPI select to access SD card              |
| D5  | SPI_SELn,                                 |
|     | Enable access to the neurons via SPI.     |
|     | If not set the low, the interface is USB. |

If using the USB port for power supply, do not forget to connect a GND pin of the NeuroShield to a GND pin of the host.

The NeuroShield requires 5V power supply which can be delivered through the USB connector or through the Arduino J1 connector.

<u>NeuroShield V0.3</u>: Compatible with base platforms supporting both 5V and 3.3V IO voltage (J1, pin 7, IOREF is not connected)

<u>NeuroShield V0.1 and V0.2</u>: Compatible with the Arduino UNO and other base platforms supporting 5V IO voltage. NOT compatible with base platforms supporting 3.3V IO voltage (J1 , pin 7, IOREF is connected to 5V)

| NeuroShield                  | 576 neurons  |
|------------------------------|--------------|
| + 1st NeuroBrick             | 1728 neurons |
| + 2 <sup>nd</sup> NeuroBrick | 2880 neurons |
| + 3 <sup>rd</sup> NeuroBrick | 4032 neurons |

Expanding the network



- Disconnect the NeuroShield from its power supply before plugging a NeuroBrick module
- Align the cut corner of the NeuroBrick with the same marking on the NeuroShield
- The Connect function of the API automatically detects the size of the NeuroMem network and returns its value through the GetNetworkInfo function