
NeuroMem
Technology

Reference Guide

Radial Basis Function and K-Nearest neighbor digital chip

Version 5.4
Revised 06/19/2019

NeuroMem Reference Guide 2/38

NeuroMem is a technology of General Vision, Inc. (www.general-vision.com)

This manual is copyrighted and published by General Vision. All rights reserved. No parts of this work may be
reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage and retrieval systems - without the written permission of GV.

NeuroMem Reference Guide 3/38

1 TABLE OF CONTENTS

2 Introduction ... 5

2.1 NeuroMem Key Features .. 5
3 What is a neuron? ... 7

3.1 Neuron part 1: A memory holding a pattern .. 8
3.2 Neuron part 2: A distance evaluation unit ... 8
3.3 Neuron Part 3: An associative recognition logic ... 10

3.3.1 Firing stage ... 10
3.3.2 RBF or KNN behavior .. 10
3.3.3 Identified or Uncertain recognition .. 10
3.3.4 Unknown recognition ... 10
3.3.5 Winner-Takes-All .. 11

3.4 Neuron Part 4: A learning logic ... 11
3.4.1 Commitment of a new neuron ... 11
3.4.2 Reduction of the influence field of firing neurons .. 11
3.4.3 Learning the “0” or null category ... 11
3.4.4 Degeneration of a firing neuron ... 12
3.4.5 What happens when the network is full? ... 12

3.5 Neuron Part 5: An element in an infinite chain .. 13
4 Network architecture .. 14

4.1 A chain of identical neurons ... 14
4.2 Save and Restore of the neurons ... 16
4.3 Network full .. 17

5 Managing multiple networks ... 18

5.1 Use of the context register ... 19
5.2 Multiple networks for multiple experts .. 19

5.2.1 Assigning a user-defined context.. 20
5.2.2 Using Context 0... 20
5.2.3 Building inter-experts robust decision.. 21

6 Operations in Normal mode .. 22

6.1 Vector broadcasting ... 23
6.2 Vector Learning .. 23

6.2.1 Global settings prior to learning ... 24
6.2.2 Reading the number of committed neurons .. 24
6.2.3 Building a knowledge independent of the training sequence .. 24
6.2.4 Controlling the generalization capabilities of the network .. 25

6.3 Vector Recognition in RBF mode .. 25
6.3.1 Response Type 1: Conformity detection .. 26
6.3.2 Response type 2: Best-match ... 26
6.3.3 Response type 3: Detailed matches ... 26

6.4 Vector recognition in KNN mode .. 28

NeuroMem Reference Guide 4/38

6.5 Practice ... 29
6.5.1 Example 1 ... 29
6.5.2 Example 2 ... 31

7 Operations in Save_Restore Mode .. 32

7.1 Save and Restore of the neurons’ content ... 32
7.1.1 Important Remarks ... 33
7.1.2 Warning about merging knowledge ... 33

7.2 Reading the contents of a specific neuron ... 34
8 Knowledge base ... 35

8.1 Formatting Knowledge files .. 35
8.2 Merging knowledge Bases .. 35

8.2.1 Case #1: independent networks ... 35
8.2.2 Case #2: Related networks ... 35

9 NeuroMem registers ... 36

9.1 Neuron behavior per status per instruction ... 37
9.2 Commands changing the RTL neuron in chain ... 38

NeuroMem Reference Guide 5/38

2 INTRODUCTION

The NeuroMem technology is a crucial enabler for cognitive computing and artificial intelligence. It is an
architecture of cognitive memories which react to input patterns and can be compared to the brain because of its
low power requirements, scalability, and instantaneous internal communications.

A NeuroMem chip is a fully parallel silicon neural network: it is a chain of identical elements (i.e. neurons) which
can store and process information simultaneously. They are addressed in parallel and have their own “genetic”
material to learn and recall patterns without running a single line of code and without reporting to any
supervising unit. In addition, the neurons fully collaborate with each other through a bi-directional and parallel
neuron bus which is the key to accuracy, flexibility, and speed performance. Indeed, each neuron incorporates
information from all the other neurons into its own learning logic and into its response logic. This mechanism
prevents the learning of any redundant information, but also the immediate detection of novelty or potential
conflicts. Another resulting achievement of the parallel architecture of NeuroMem is its constant learning and
recognition time regardless of the number of connected neurons, as well as the ability to expand the size of the
neural network by cascading chips.

2.1 NEUROMEM KEY FEATURES

- Parallel broadcast mode

o All the neurons update their distance value simultaneously as the components of an input
vector are broadcasted on their parallel bus. Upon receipt of the last component of the input
vector, all neurons have calculated its distance to the reference pattern they hold in memory. If
an input vector is broadcasted to a chain of 10, 100 or 1000 NeuroMem chips, their distance
values are calculated and ready to be read as soon as the last component of a vector his
broadcasted.

- Autonomous model generator
o The model generator built-in the NeuroMem chip makes it possible to learn examples in real-

time when they drift from the knowledge residing in the current neurons. The “novelty”
examples can be stored in neurons assigned to a different context to allow a supervised
verification and learning later.

o The knowledge built by the neurons is cloneable since the content of the neurons can be saved
and restored.

- Reactive recognition with Winner-Takes-All
o The neurons are capable of ranking similarities between input vectors and the reference

patterns they hold in memory, but also reporting conflicting responses or cases of uncertainty,
reporting unknown responses or cases of anomaly or novelty.

o The neurons order their response autonomously per increasing distance value as the host
processor sends K successive read commands of the Distance register. Again, this unique
feature pertains to the parallel architecture of the neurons and a patented Search and Sort
process which allows them to know if other neurons have a smaller distance value without the
need for a supervisor or controller.

NeuroMem Reference Guide 6/38

- Fixed latency
o The time necessary to obtain a response is independent from the number of committed

neurons in the network and from their type of response. At each read command, only the
neuron with the smallest distance outputs its value to the parallel bus after 19 clock cycles. If
an application requires the use of a KNN with K equal to 50 for example, the distance values of
the 50th closest neurons are read in 50 * 19 clock cycles.

- Multiple contexts or network dynamic segmentation
- Objective of using multiple contexts:

o Build decision spaces with redundancy (overlapping decision areas)
o Build decision spaces with complementarity (mutually exclusive decision areas)
o Building hierarchical or parallel decision trees between sub-network leading to advanced

machine learning with uncertainty management and hypothesis generation.
- Multiple type of classifier

o The neurons can behave as a KNN or RCE (class of RBF)
o A Restricted Coulomb Energy (RCE) classifier uses Radial Basis Function as activation function.

It can represent complex nonlinear mappings and widely used for function approximation, time
series prediction, and control.

o A K-Nearest Neighbor algorithm (KNN) is a method for classifying objects based on closest
training examples in the feature space. The parallel architecture of the NeuroMem chip makes
it the fastest candidate to retrieve the K closest neighbors of a vector among ANY number.

NeuroMem Reference Guide 7/38

3 WHAT IS A NEURON?

A neuron is a cognitive and reactive memory which can autonomously evaluate the distance between an
incoming pattern and a reference pattern stored in its memory. If this distance falls within a range called the
influence field, the neuron returns a positive classification which consists of the distance value and the category
of its reference pattern.

Although a neuron has its own processing unit to react to a pattern, it is the collective response of all the neurons
which produces interesting diagnostics. When attempting to recognize a pattern, each neuron has the capability
to spy the response of its counter-parts and to withdraw itself from the race if another neuron reports a smaller
distance value.

NeuroMem Reference Guide 8/38

3.1 NEURON PART 1: A MEMORY HOLDING A PATTERN

Each neuron has a memory with a fixed capacity and this capacity determines the maximum length of the
patterns which can be learned and recognized by the neurons. The neurons’ memory capacity is 256 bytes in
both the NeuroMem CM1K and NM500 chips. The NeuroMem IP can be customized to accommodate different
capacities.

All the neurons point to the same memory cell index at any time. The cell index is automatically incremented
when a new component is broadcasted to the neurons. It is reset to 0 when the last component is entered. Other
subsidiary operations can change or reset the index as described under the chapter “Functional diagrams”.

3.2 NEURON PART 2: A DISTANCE EVALUATION UNIT

The distance evaluation unit computes the distance between the incoming vector and the pattern stored in the
neuron memory. This occurs in parallel for all the committed neurons each time a vector component is
broadcasted to the neuron bus. The Distance value is automatically reset to 0 by writing the first component of a
vector or by writing to the Network Status Register (to change the operation mode or the type of classifier).

The distance can be calculated using two norms: L1 (default) or Manhattan distance, and Lsup. The selection of a
Norm depends on the application and the type of patterns to classify, their possible variations between
categories and the final intent of the recognition (identification, classification, anomaly detection).

NeuroMem Reference Guide 9/38

Norm L1 (Manhattan distance)

Norm L Sup

The L1 distance emphasizes the
drift of the sum of the all
components between V and P.

The Lsup distance emphasizes
the largest drift of the same
component between V and P.

Use model
Let’s take the example of a data mining application
where the profile of customers is categorized based
on attributes such as age, sex, weight, skin color,
date of graduation, income bracket, etc.

These attributes are expressed in different units, and
some of them are codes rather than measurements.
Still they can be assembled in a pattern vector to help
classify people. In this case, the distance between an
input vector and a stored prototype is not
representative of any unit, but the L1 Distance gives
an idea of the overall variations between them. On
the other hand, the Lsup Distance is meaningless
since depending on the index of the component with
the highest difference, the unit can be years, dollars,
codes, etc.

Use model
Neurons can be used as a noise filter if they hold
prototypes of non-noisy patterns and their Norm
is set to Lsup.

In the above example, Vnoisy shown to the right is
a noisy version of vector V shown to the left. The
Lsup distance between V and Vnoisy is 50 when
the L1 distance is 4900. Indeed, the L1 distance
increases dramatically when noisy peaks are
superimposed onto the signal. Neurons trained
with an L1 distance will not easily associate Vnoisy
to V. Neurons trained with the Lsup distance will
make this association more easily.

NeuroMem Reference Guide 10/38

3.3 NEURON PART 3: AN ASSOCIATIVE RECOGNITION LOGIC

3.3.1 FIRING STAGE

The associative logic of the neuron is activated when the last component of the input pattern is received. The
calculation of the distance between the input pattern and the pattern stored in the neuron is complete and if its
value is less than the neuron’s Influence Field, the neuron enters in a “firing” mode and is ready to respond to a
query for its distance, category and identifier.

3.3.2 RBF OR KNN BEHAVIOR

The default recognition logic of a neuron is a Radial Basis Function (RBF) as described in the above paragraph
“Firing stage”. RBF allows to learn examples and build a highly non-linear decision space. RBF also introduces the
powerful notion of “unknown” and “uncertainty”.

The recognition logic can also be set to a K-Nearest Neighbor (KNN) which is a subset of RBF where the value of
the Influence Field is discarded, and the neuron always fires. Under KNN mode, a pattern is always recognized,
but the closest firing neuron may hold a distant pattern and report a high distance value.

3.3.3 IDENTIFIED OR UNCERTAIN RECOGNITION

When a neuron fires, it immediately knows if other firing neurons have a different category. If yes, the
classification is labeled as Uncertain. If no, the classification is labeled as Identified.

This flagging is executed in a single clock cycle regardless of the number of the firing neurons. This is made
possible thanks to the patented parallel architecture of the network interconnecting all the neurons of a
NeuroMem network (both intra and inter chips).

3.3.4 UNKNOWN RECOGNITION

If no neuron fires, the input pattern is considered as unknown. This feature is essential for two purposes: (1) to
learn more and fine tune the knowledge built by the neurons; (2) to detect novelty and anomaly.

Note that an Unknown recognition cannot occur if the network is set in KNN mode.

NeuroMem Reference Guide 11/38

3.3.5 WINNER-TAKES-ALL

When a neuron fires, it is ready to respond to queries for its distance, category or identifier but it will first comply
to a Winner-Takes-All race, such that it outputs its response on the NeuroMem bus only if it holds the smallest
value among all the remaining firing neurons. Smallest value in the case of the distance register means the
closest match.
The Winner-Takes-All is executed in a fixed number of clock cycles regardless of the number of the firing neurons.
This is made possible thanks to a patented “Search and Sort” mechanism interconnecting all the neurons of a
NeuroMem network (both intra and inter chips).

3.4 NEURON PART 4: A LEARNING LOGIC

The learning logic is activated after the associative logic when a category value is assigned to the last input
pattern.

3.4.1 COMMITMENT OF A NEW NEURON

Once a new pattern has been broadcasted to the network, only the “firing” neurons or the “ready-to-learn”
neuron will react to a learning operation.

If no neuron fires, a new neuron gets automatically committed to hold the input pattern and its associated
category. Its influence field is set to the current value of the Maximum Influence Field.

If neurons fire, a new neuron gets committed only if none of the firing neurons identifies the input pattern as
belonging to the category to learn. Its influence field is set to the distance of the closest firing neuron.

3.4.2 REDUCTION OF THE INFLUENCE FIELD OF FIRING NEURONS

If the category of a firing neuron is different from the category to learn, it will automatically reduce its Active
Influence Field (AIF) to the distance value between its stored pattern and the input pattern. This distance is
calculated by the neuron during the broadcast of the input pattern. The reduction of the AIF is a corrective action
which will prevent the neuron from firing if the same input pattern is broadcasted to the network again.

3.4.3 LEARNING THE “0” OR NULL CATEGORY

NeuroMem Reference Guide 12/38

Learning a category equal to the value 0 is a special teaching instruction which cannot commit any new neuron
but can force neurons which are firing erroneously to reduce their influence fields and not repeat this misfiring
the next time a same pattern is broadcasted to the neurons.

Learning a category 0 is equivalent to teaching a background example or a counter example. The intend of this
instruction is to correct neurons which overgeneralize excessively.

3.4.4 DEGENERATION OF A FIRING NEURON

If the Active Influence Field of a neuron must be reduced to a value lesser than the Minimum Influence Field
value (MINIF), its AIF is set to the MINIF and the neuron is also flagged as degenerated.

A degenerated neuron behaves as any other committed neuron. If it fires, its distance and category can be read,
but bit 15 of the category will be flagged to notify that the neuron was prevented from shrinking during the
training phase. This can be an indication that its response should be weighted differently than the response of
another firing neuron which is not degenerated.

One interest of the degenerated flag is to obtain statistics on neurons’ content at the end of a learning phase:

(1) Degenerated neurons might indicate that the learned patterns contain insufficient information to
discriminate their categories. It might also pinpoint errors in the categories assigned to the input
patterns.

(2) The significant number of degenerated neurons for a specific category can help establish that an
additional feature should be extracted and taught under a different context to classify this category.

Example 1:
In an OCR application, the U and V letters can have very similar signature. It would not be a surprise that the
learning of examples of V and U degenerate some neurons because an area of uncertainty between the models
of U and V exists (depending on the font of the characters).

 Example 2:
A common cause for degenerating neurons is to send contradictory learning instructions. For example, if a
knowledge already holds reference patterns of the character V and an operator teaches a new V pattern as an A
character by mistake, this erroneous instruction will probably degenerate some of the neurons holding a correct
V pattern.

3.4.5 WHAT HAPPENS WHEN THE NETWORK IS FULL?

Once the network is full, a learning command can no longer trigger the commitment of a new neuron, but it can
still trigger the reduction of the influence field of committed neurons. This is like teaching the “null” category and
modeling a conservative decision space.

NeuroMem Reference Guide 13/38

3.5 NEURON PART 5: AN ELEMENT IN AN INFINITE CHAIN

A neuron is an element in a chain of neurons. The neurons are daisy-chained to compose a network of neurons,
but they all receive and decode commands in parallel as described in the next chapter. During the execution of
several commands, the neurons are all interconnected to make a global decision. This decision can be to learn a
new pattern or to classify a pattern with possibly multiple responses ordered per decreasing level of confidence.

Exceptionally, a neuron can be accessed individually when the network is switched from its Normal mode to the
passive Save and Restore mode. However, this practice should only be to read the content of a neuron and
definitively not to write it. Indeed, the content of the neurons is only consistent as a whole since they are trained
as a whole.

NeuroMem Reference Guide 14/38

4 NETWORK ARCHITECTURE

The fully parallel architecture of the NeuroMem chip is made possible because all the neurons are identical and
do not require any controller or supervisor to interact with one another. They receive the same instructions and
data over the neuron parallel bus and execute them at the same time. The execution of certain instructions
requires that the Ready-To-Learn (RTL) and Committed neurons consult the response of one another over the
neuron parallel bus. This interaction is necessary to build a consistent and adaptive knowledge.

4.1 A CHAIN OF IDENTICAL NEURONS

At initialization, the neurons are empty meaning that they do not have any knowledge. Their status is Idle except
for the first one which is Ready-To-Learn (RTL). As examples are learned by the network, neurons are
progressively used to store reference patterns along with their associated category and become Committed.

The state of a neuron in the chain can be Idle, RTL or Committed. It is defined by the status of its daisy-chain-in
(DCI) and daisy-chain-out (DCO) lines. The DCO of a neuron rises if its DCI is high and its category register is
different from 0. The commitment of neurons is propagated automatically as examples are taught and retained.
The RTL neuron also moves along until no idle neuron is available in the chain.

Commitment of
1st neuron

Commitment of
2nd neuron

Commitment of
Mth neuron

NeuroMem Reference Guide 15/38

The neural network is composed of N neurons:
- M committed neurons holding a reference pattern and a category value
- 1 ready-to-learn (RTL) neuron
- N-(M-1) idle neurons

The behavior of a neuron is function of its state in the chain:

Neuron State Idle Ready-to-Learn Committed
Behavior Does not respond to

input patterns, but
updates its global
registers such as Context,
Minimum Influence Field
and Maximum Influence
Field.

Holds the last input pattern.
If a category is taught and
not recognized by any of the
committed neurons, the RTL
neuron stores the category
and becomes committed.
The next Idle neuron in the
chain becomes the RTL
neuron.

All committed neurons
attempt to recognize an
incoming vector. Once
committed, a neuron can
only shrink its Influence
Field and set its
Degenerated flag. Its
status can return to Idle
when it is instructed to
forget.

Memory x x
Distance calculator x x
Associative logic x
Learning logic x x
Save and Restore x x

NeuroMem Reference Guide 16/38

4.2 SAVE AND RESTORE OF THE NEURONS

Once a decision space has been modeled and validated by recognizing large datasets, the content of the neurons
represents a knowledge base and a valuable intellectual property.

Saving the knowledge consists of saving the contents of the committed neurons including their memory and
registers as follows:
- Neuron memory (N bytes minimum)
- Neuron context (1 byte)
- Neuron minimum influence field (1 integer)
- Neuron active influence field (1 integer)
- Neuron category (1 integer)

This operation can be done when the network is switched to the Save and Restore mode.
To ensure forward compatibility of a knowledge with new generation of NeuroMem chips, it is highly
recommended to save all data as integer. This is what is implemented in all the General Vision APIs and it ensures
that a knowledge built on the NM500 chips can be transferred to a new chip with possible larger neuron memory
capacity

If a network has M committed neurons, the knowledge file will occupy M * (N+ 4) integers plus an optional
custom header.

Remark 1:
Before restoring a knowledge, the content of the neurons should be cleared, unless you intentionally want to
merge two knowledge bases (the one residing in the neurons and the one to load).
Merging two knowledge bases using each two different contexts can be made safely.
Merging two knowledge bases containing neurons with identical contexts is highly dangerous since their neurons
could contradict each another. Refer to Chapter 8 for more details.

Remark 2:
A knowledge file is portable from one NeuroMem platform to another. Its use also requires knowing which
feature extraction function has generated the models stored under each context in use, as well as the values of
Minimum and Maximum Influence fields also associated to each context. This information can be stored in the
header of the knowledge file or a separate preference file.

Remark 3:
The content of the neurons must be considered as a whole (a knowledge). At any time, the influence fields of the
neurons are based on what they have already learned all together. Saving the knowledge, editing or removing a
single neuron and restoring the knowledge can be very detrimental!
The only possible manipulation which is acceptable is to split neurons per context to produce separate
knowledge files per context. Similarly, they can be merged back. Refer to Chapter 8 for more details.

NeuroMem Reference Guide 17/38

4.3 NETWORK FULL

Once the network is full, a learning command can no longer trigger the commitment of a new neuron, but it can
still trigger the reduction of the influence field of committed neurons. This is like teaching the “null” category and
modeling a conservative decision space.

Also, reading the values of the registers NCOUNT, GCR, MINIF and MAXIF returns 0xFFFF.

NeuroMem Reference Guide 18/38

5 MANAGING MULTIPLE NETWORKS

The use of multiple NeuroMem networks allows to define robust diagnostics and hypothesis generation. These
multiple networks can reside in the same NeuroMem chip or chain of chips and the commitment of neurons to
one or another context is made dynamically as new examples are learned.

The object of using multiple networks (or experts) is simple:
(1) Build decision spaces with redundancy (overlapping decision areas)
(2) Build decision spaces with complementarity (mutually exclusive decision areas)

For example, if an application uses two sensors such as a microphone to identify noises or voices and a camera to
analyze a video content, two contexts must be defined to toggle between two sub-networks: the neurons trained
to recognize feature vectors extracted from audio signal and the ones trained to recognize feature vectors
extracted from a video signal. Furthermore, if the application involves outdoor video monitoring, it might be
useful to train the neurons differently as a function of time of the day. Indeed, the images will have nothing in
common between day and night and might even require the use of different cameras. A context Day and context
Night will allow training two sub networks based on the time of the day. In summary, usage of multiple contexts
allows segmenting the network per data type. This segmentation can be based on many different factors
including but not limited to the sensor model; the sensor settings such as a focal length or frequency range; the
type of feature extracted from the data such as a time series or frequency series; the contextual environment of
the experiment; the time of collection of the data and more.

NeuroMem Reference Guide 19/38

5.1 USE OF THE CONTEXT REGISTER

The Context allows the partitioning of a physical NeuroMem network into multiple virtual networks trained at
recognizing different objects, or similar objects but under different contextual environments (scale, lighting,
frequency range, etc).

A context is selected by writing a context value to the Global Context Register (GCR) of the chip. Any committed
neuron with its context register different from the global context register turns idle and does not participate in
any learning or recognition operation. One exception: the context value 0 enables all the neurons without
regards of their context.

When a neuron gets committed, its Neuron Context Register (NCR) is set to the value of the Global Context
Register (GCR). Whenever the GCR is changed, all the neurons with a different context value will not attempt to
recognize any input vector, nor react to the learning of a new vector. They remain idle until the GCR is changed to
a value matching their context value. A GCR equal to 0 activates all the neurons regardless of their context value.

The neurons belonging to a given context define a feature space. If the network has neurons belonging to N
different contexts, it means that it contains N different feature spaces. Finally, if the Global Context is set to the
value zero, all feature space will be used in conjunction to recognize the input pattern.

There can be many reasons to build a knowledge featuring neurons with multiple contexts:
- Example 1: multiple sensors to monitor a same event (ex: new cameras are now equipped with camera,

microphone and possibly gyro)
- Example 2: same audio sensor but multiple sampling rates
- Example 3: same video sensor but different zooming range
- Example 4: same sensor but multiple features extracted from the raw data source (ex: color histogram and

histogram of gradient in a patch of pixels)

Since the NeuroMem neurons have their built-in model generator, they (not you) will decide and control when a
new neuron must be committed and this for each context. For example, you may very well see cases where
learning an example generates the commitment of a new neuron in context 1, but not in context 2. The 1st
explanation is that the neurons belonging to context 2 already recognize the feature type 2 with the correct
category. The 2nd explanation is that no neuron belonging to context 1 recognizes the feature type 1, or if they
recognize it their category does not match the category to learn.

Therefore, the segmentation of the neural network into contexts is made dynamically as new examples are
taught. Each context models a different decision space. The only thing the contexts have in common are the
categories they model (power-up, normal, over-loaded, power-down). Their dimension and the number of
examples retained as novelty by the neurons are all independent.

5.2 MULTIPLE NETWORKS FOR MULTIPLE EXPERTS

NeuroMem Reference Guide 20/38

A single example (annotated at a given time, at a specific location, etc.) can be used to extract N different feature
vectors. These feature vectors represent different dimensions, have different lengths, etc. and basically build N
different decision spaces.

Example #1:
If a material can be characterized by its colors and texture, two sets of vectors can be extracted from each
sample: one describing its color distribution, and one describing its graininess. The classification of the material
then relies on two contexts, or two decision spaces.

Example #2:
An audio signal can be monitored under different frequencies. If we assume that 3 frequencies are of interest,
three sets of vectors can be continuously extracted from the same signal but using three frequencies and
durations. The classification of the signal then relies on three contexts, or three decision spaces.

5.2.1 ASSIGNING A USER-DEFINED CONTEXT

A context value should be considered as an index to a list of experts.
You can have multiple experts trained on the same images and annotations but using different feature
extractions

- Context 1: subsample 32x64 with 2X4 blocks
- Context 2: subsample 32x64 with block 6x32
- Context 3: HistogramRGB

You can have multiple experts trained using a same feature but on different types of images
- Context Zoom 1, Context Zoom 5, Context Zoom 10
- Context Daytime and Context Nighttime

The context is a user-defined index value tying together the nominal size of the ROI, a type of feature, a scale,
etc.

The context must be set to the correct value prior to broadcasting a vector. This operation is only necessary if the
vector represents a new dimension (aka a different feature, or ROI size, or image scale, etc.)

The context of a neuron is "frozen" at the time it gets committed. This is equivalent to assigning its index to a list
of experts in use.

5.2.2 USING CONTEXT 0

The context 0 is a special value in the sense that it activates all the neurons regardless of their individual context
value.

The context 0 should not be used during learning, except if your application uses only one expert.

Example #1

NeuroMem Reference Guide 21/38

- You train 3 experts called Context Zoom 1, Context Zoom 5, Context Zoom 10, and using the same feature
extraction. At the time of the recognition, you select Context 0 and build a consensus if at the maximum 2 of the
experts agree with the recognized category. For example, you would consider a response as false positive if
Context Zoom 1 and Context Zoom 10 agree, but not Context Zoom 5. The fact that one scale is skipped could be
suspicious

Example #2
- You train 2 experts Context Daytime and Context Nighttime to recognize a target but activate them both at
dawn and dusk.

5.2.3 BUILDING INTER-EXPERTS ROBUST DECISION

The use of multiple networks trained on multiple features allows generating hypotheses and building robust
decision schemes. For example, an application with a high cost of mistake may require that at least N sub-
networks produce a same classification in order consider the overall response as a positive identification.

5.2.3.1 Example of combinatorial decision

A practical approach to recognizing moving targets such as vehicles in an outdoor scene may consist of learning
relevant subsets of these targets such as a silhouette, a hood, headlights, a wheel, a tire, etc. Each subset is
associated to a different network trained to deal with changes of scale and orientation. When analyzing the
content of a new image, each network reports a map of the locations where it recognizes a pattern. The
combination of these maps produces a “Transform” image which is much simpler than the original image and can
be classified by a higher-level context trained to verify the spatial distribution of the different subsets to produce
a final decision. For example, it recognizes a car if it has a silhouette of type “Front View” which contains a hood,
2 headlights and 2 front views of a tire. It also recognizes a car if it has a silhouette of type “Side View” which
contains 2 side views of a tire.

5.2.3.2 Example of hierarchical decision

In predictive maintenance, the classification of anomalies can be processed hierarchically starting with the
detection of any novelty by a top “conservative” engine (neurons of context#1) to make sure that nothing is
discarded. The samples recognized as novelty trigger the use of a second engine trained to classify the data with
a greater level of details. Based on its classification results, this engine can trigger other engines and so on until
the novelty becomes a classified anomaly.

NeuroMem Reference Guide 22/38

6 OPERATIONS IN NORMAL MODE

Under Normal operations, the neurons learn and recognize patterns as a Radial Basis Function (RBF) classifier and
more precisely a Restricted Coulomb Energy (RCE) classifier. They can also recognize patterns as a K-Nearest
Neighbor (KNN) classifier.

Under the SR mode, the automatic model generator and search-and-sort logic are disabled. The neurons become
dummy memories but can be read or written in the least amount of time. This SR mode is essential to transfer
knowledge bases between hardware platforms or make backup prior to learning additional examples.

This section describes the possible sequences of operations in Normal mode and how the neurons handles them
differently depending on their status as Idle, Ready-To-Learn or Committed.

NeuroMem Reference Guide 23/38

6.1 VECTOR BROADCASTING

The broadcast of a vector to the neurons is made with the following sequence of operations:

1) Write Context (optional)

a) If the new vector must be associated to a context different than the current value of the Global Context
or if the distance norm must be changed

2) Loop to write the N-1 components of the input vector
a) Write all the components of the input vector but the last one in the Ready-To-Learn. For all the

committed neurons with a context equal to the Global Context, their distance register is updated after
each Write Component per the Norm in use.

3) Write Last Component
a) For all the committed neurons with a context value equal to the Global Context register, their distance

register is updated and represents the distance between the input vector and the prototype stored in
their memory. If the distance of a neuron is less than its influence field, the neuron “fires” meaning that
it is ready to respond to further inquiries such as a Read DIST or Read CAT commands. Also at the end of
the Write Last Component, the entire neural network has been able to evaluate if the vector is
recognized or not, and with uncertainty or not. Recognition exists is at least one neuron fires.
Uncertainty exists if at least two of the firing neurons have a different category register.

6.2 VECTOR LEARNING

All the neurons have their internal learning logic and teaching a vector is as simple as broadcasting its
components and then writing its category value.

 If the pair (vector and category) represents novelty to the existing neurons, the Ready-To-Learn neuron becomes
committed. It stores the instructed category in its category register. Its influence field of the new neuron is set to
the smallest distance register of the firing neurons or the Minimum Influence Field whichever is greater. If they
are no firing neurons at all, its influence field is set to the current value of the Maximum influence field. The next
neuron in the chain turns from idle to RTL (ready-to-learn). If there are neurons which recognized the vector with
a category other than the instructed category, they automatically reduce their influence field to prevent such
erroneous recognition in the future.

If the AIF of a neuron reaches the Minimum Influence Field, the bit 15 of its category register is set to 1. The
neuron is said “degenerated”. It still reacts to input patterns as any other committed neuron but the bit 15 of its

NeuroMem Reference Guide 24/38

category indicates that the neuron was prevented from shrinking its AIF to a smaller value during training and its
response should be weighted differently than the response of another firing neuron which is not degenerated.

6.2.1 GLOBAL SETTINGS PRIOR TO LEARNING

The following global registers affect the way the neurons will learn new vectors and model a decision space.
Changing them should be done prior to broadcasting the vectors to learn.

Global Context (to segment the network)
Maximum Influence Field (to adjust conservatism)
Minimum Influence Field (to control uncertainty domain)
KNN bit in Network Status Must be set to 0. KNN is not a learning mode.

Remark: the minimum and maximum influence fields must be expressed in a dimension relevant to the
dimension of the input vector.

The KNN mode is not appropriate for learning since it will create a new neuron each time a new category value is
taught and do nothing more. The RBF mode must be selected to build a decision space modeling multiple
categories and also with areas of “unknown” or “uncertainties” which are essential for true artificial intelligence
with voluntary redundancy for accuracy, context awareness, hypothesis generation and more.

6.2.2 READING THE NUMBER OF COMMITTED NEURONS

The NCOUNT register returns the number of committed neurons in the chain. When the chain is full,
NCOUNT=0xFFFF.

6.2.3 BUILDING A KNOWLEDGE INDEPENDENT OF THE TRAINING SEQUENCE

The decision space is modeled as examples are taught and consequently its shape depends on the sequence of
the training examples. Indeed, their order determines the commitment of new neurons and the shrinking of
existing committed neurons. This temporal dependency is not ideal and it is recommended whenever possible to
learn the examples repeatedly until the decision space is stable. This condition is established when no new
neuron is committed between two iterations.

The ability to execute an iterative learning requires that the training examples are stored and not streamed. The
repetitive broadcast of a significant number of vectors can be time consuming, but the actual learning and
modeling of the decision space triggered by the Write CAT instructions will always take a constant number of
clock cycles regardless of the number of committed neurons (3 or 19 cycles depending on the recognition status).

NeuroMem Reference Guide 25/38

For more information please refer to the NeuroMem Decision Space Mapping manual:
 http://www.general-vision.com/documentation/TM_NeuroMem_Decision_Space_Mapping.pdf

6.2.4 CONTROLLING THE GENERALIZATION CAPABILITIES OF THE NETWORK

The generalization capability of the neurons is a significant strength since it means that learning a single relevant
example can be enough to recognize many other similar cases. However, this strength can also lead to a lack of
discrimination between subtle variations and become a weakness.

Three methods can be used to control the generalization capabilities of the neurons:

1. Learn many examples representing a broad range of contextual variations and, if possible, learn them in
an iterative manner as described in the previous paragraph

2. Use the category 0 to learn counter examples for shrinking the influence field of neurons firing
erroneously. This method is a dynamic and interactive correction which allows to only restrict the
overgeneralization of certain neurons, as opposed to the next method based on the MAXIF which is a
limitation imposed on all the neurons.

3. Reduce the value of the Maximum Influence Field (MAXIF) which becomes the default active influence
field value of the non-committed neurons. The smaller the MAXIF, the lesser generalization or over-
fitting of the neurons. Refer to the Mapping Decision Space Reference guide for more information. Note
that the value of the MAXIF should be set in relation to the dimension represented by the feature
vectors.

6.3 VECTOR RECOGNITION IN RBF MODE

The recognition of a vector is readily available after its broadcast to the neurons. Indeed, the neurons which
identify the vector as falling within the similarity domain of the vector stored in their memory have their “fire”
flag raised. The response of the firing neurons can be accessed with successive Read DIST, followed by Read CAT
and optionally Read NID registers). The first distance quantifies the difference between the input vector and the
neuron with the closest pattern. The category of this neuron is the category with the highest confidence level.
The second distance quantifies the difference between the input vector and the neuron with the second closest
pattern. The category of this neuron is the category with the second highest confidence level, and so on. In the
case of the RBF classifier, all the firing neurons have been read when Read DIST returns the value 0xFFFF.

The following diagram illustrates the three levels of response which can be delivered by the neurons through the
readout of the registers NSR, DIST, CAT and NID:

- Conformity, or status of the recognition (identified, uncertain or unknown)
- Best match in distance and its associated category
- All possible matches listed per increasing distance values.

http://www.general-vision.com/documentation/TM_NeuroMem_Decision_Space_Mapping.pdf

NeuroMem Reference Guide 26/38

6.3.1 RESPONSE TYPE 1: CONFORMITY DETECTION

As soon as a vector is broadcasted to the neurons, the following recognition status is known:

- Unknown: no neuron recognizes the input vector
- Identified: one or several neurons recognize the vector and agree with its category
- Uncertain: one or several neurons recognize the vector but disagree about its category

6.3.2 RESPONSE TYPE 2: BEST-MATCH

The first neuron to respond is the firing neuron with the smallest distance value is equivalent to a best match. If
its distance is equal to 0, it means that the vector matches exactly the prototype stored in the neuron. If the
Recognition Status is Identified, the Best match is the only possible response. On the other hand, if the
Recognition Status is Uncertain, other responses can be read from the neurons as described in the next
paragraph.

6.3.3 RESPONSE TYPE 3: DETAILED MATCHES

Examining the distance and category of all the firing neurons can be of interest to reinforce the accuracy of a
decision, especially in the cases of uncertainty. The first distance quantifies the difference between the input
vector and the neuron with the closest pattern. The category of this neuron is the category with the highest
confidence level. The second distance quantifies the difference between the input vector and the neuron with

NeuroMem Reference Guide 27/38

the second closest pattern. The category of this neuron is the category with the second highest confidence level,
and so on until all firing neurons have reported their response and the distance reads 0xFFFF.

If two neurons fire with the same distance but different category, their individual responses are read as follows:
Read DIST, Read CAT, Read DIST, Read CAT. The second Read DIST returns the same value as the first Read DIST
but is necessary to access the category register of the second neuron.

If two neurons fire with the same distance and same category, only the response of the first one is read. The first
Read DIST will notify both neurons to stay in query, but both will output their category at the following Read CAT
and therefore exclude themselves from the next query. A second Read DIST will return the next higher distance
value if applicable.

If the category value is greater than 0x8000 or 32768 (bit 15=1) you have a warning that the neuron is
“degenerated”. Masking bit 15 returns the real category value (AND with 0x7FFF). The degenerated flag simply
indicates that the neuron was prevented from shrinking its AIF to a smaller value during training and that its
response should be weighted with care, or simply differently than the response of a neuron which is not
degenerated.

Reading the identifier of the neuron is optional. This feature can be useful to review the content of the neuron(s)
which recognize the vector.

In the case of multiple firing neurons, a global response can then be established using probability functions,
dispersion of the distances, minimum number of aggregates, etc.

Case study:
Let’s take the example of a recognition where multiple firing neurons recognize a vector and return the following
responses:

Distance 5 6 9 10 11 15 39
Category 8 8 7 7 7 7 5

The best match is a reference pattern of category 8 recognized with a distance 5. However, if we look at the
response of all the firing neurons from a statistical standpoint, we can observe that the first two closest neurons
report a category 7, but the next four firing neurons report a category 7 with a distance which is not that much
bigger. If the cost of an inaccurate recognition is low, the response of the 1st neuron with category 8 is the
simplest to retrieve (and very fast). On the contrary, if the application cannot afford a false-positive, it might be
wiser to involve some statistics and assume that category 7 is the dominant category and should be the one
selected for a final decision. More sophisticated rules can be deployed including the analysis of the histogram of
the categories, and more. Some applications might even consider the generation of a “response” vector
composed of all the “firing” categories (i.e. 8,8,7,7,7,7,3,5) and to be classified by another set of neurons taught
to classify the “response” vectors. The CM1K chip can handle up to 127 subsets of neurons trained for different
purposes. These subsets are called Contexts.

NeuroMem Reference Guide 28/38

6.4 VECTOR RECOGNITION IN KNN MODE

In KNN mode, a vector is always recognized since the classifier discards the relationship between the distance
and influence field of a neuron. Consequently, all the neurons fire and their distance and category can be read in
sequence per increasing order of distance. The first distance quantifies the difference between the input vector
and the neuron with the closest pattern. The category of this neuron is the category with the highest confidence
level. The second distance quantifies the difference between the input vector and the neuron with the second
closest pattern. The category of this neuron is the category with the second highest confidence level, and so on
for K iterations.

Remark 1:
Using the neurons as a KNN classifier does not require to learn the vectors, but rather to load them to the
neurons with or without category labels. This can be done in Save and Restore mode and executes in lesser time
since it does not require the use of the model generator internal to the neurons.

Remark 2:
The KNN mode is not appropriate for learning since it will create one new neuron each time a new category value
is taught and do nothing more.

Remark 3:
Technically, it is possible to teach the neurons with the RBF model generator and switch their behavior to KNN
for the classification. However, you must be cautious with possible artifacts:

1) The closest neuron may have an influence field in the RBF decision space requiring the neuron NOT to
fire

2) The closest neuron might not be that close, and it would be best to consider the stimuli as Unknown.

For more details, refer to the https://www.general-
vision.com/documentation/TM_NeuroMem_Decision_Space_Mapping.pdf

https://www.general-vision.com/documentation/TM_NeuroMem_Decision_Space_Mapping.pdf
https://www.general-vision.com/documentation/TM_NeuroMem_Decision_Space_Mapping.pdf

NeuroMem Reference Guide 29/38

6.5 PRACTICE

The following examples are simple test cases illustrating different behaviors of the neurons while learning and
classifying patterns.

6.5.1 EXAMPLE 1

Step 1: Learn

Learn vector1 [11,11,11,11] (1) with category 55
Learn vector2 [15,15,15,15] with category 33(2)
Learn vector3 [20,20,20,20] with category 100

(1) The learned vectors are purposely set to arrays of constant values so their representation and
relationship are easy to understand. The distance between two “flat” vectors is indeed the difference
between their constant value times their number of components. For example, the distance between
[11,11,11,11] and [15,15,15,15] is equal to 4 * 4. This simple arithmetic makes it easy to understand the
different cases of recognition illustrated in this test script.

(2) The category of the second neuron is purposely set to a lesser value than the category of the first
neuron to verify that if both neurons fire with a same distance, the category of the neuron on the 2nd
chip is still the first the be read out

Fig1 is a representation of the decision space modeled by the 3 neurons where Neuron1 is shown in red,
Neuron2 in green and Neuron3 in blue. In the following 2D graph, we limit the length of the models to 2
components instead of 4, so they can be positioned in an (X, Y) plot. X=1st component and Y=Last component,
and a surrounding diamond shape with the side equal to their influence field.

Committed neurons= 3
NeuronID=1 Components=11, 11, 11, 11 AIF=16, CAT=55
NeuronID=2 Components=15, 15, 15, 15, AIF=16, CAT=33
NeuronID=3 Components=20, 20, 20, 20, AIF=20, CAT=100

The influence fields of Neuron#0 and Neuron#1 overlap, as well as
Neuron#1 and Neuron#2 overlap but differently since their distances
from one another are different.

Step2: Recognition

The vectors submitted for recognition are selected purposely to illustrate cases of positive recognition with or
without uncertainty, as well as cases of non-recognition. The program reads the responses of all the firing
neurons, which is until the distance register returns a value 0xFFFF or 65553.

NeuroMem Reference Guide 30/38

Case of uncertainty, closer to Neuron#1

Vector=12, 12, 12, 12
Neuron 1 and 2 fire. Vector is closer to Neuron1
 Response#1 Distance= 4 Category= 55 NeuronID= 1
 Response#2 Distance= 12 Category= 33 NeuronID= 2
 Response#3 Distance= 0xFFFF Category= 0xFFFF NeuronID= 0xFFFF

Case of uncertainty, equi-distant to Neuron#1 and Neuron#2

Vector=13, 13, 13, 13,
Neuron 1 and 2 fire. Vector is equi-distant to both neurons
 Response#1 Distance= 8 Category= 33 NeuronID= 2
 Response#2 Distance= 8 Category= 55 NeuronID= 1
 Response#3 Distance= 0xFFFF Category= 0xFFFF NeuronID= 0xFFFF

Case of uncertainty, closer to Neuron#2

Vector=14, 14, 14, 14,
Neuron 1 and 2 fire. Vector is closer to Neuron2
 Response#1 Distance= 4 Category= 33 NeuronID= 2
 Response#2 Distance= 12 Category= 55 NeuronID= 1
 Response#3 Distance= 0xFFFF Category= 0xFFFF NeuronID= 0xFFFF

Case of unknown

Vector=30, 30, 30, 30,
No neuron fire
 Response#1 Distance= 0xFFFF Category= 0xFFFF NeuronID= 0xFFFF

Step3: Adaptive learning

Learn vector[13,13,13,13] with category 100. This vector is equidistant to both Neuron1 and Neuron2. Learning it
as a new category, will force Neuron1 and 2 to shrink from their AIF=16 to an AIF=8 to make room for a new
neuron which will hold the new model and its category.

NeuroMem Reference Guide 31/38

Committed neurons= 4
NeuronID=1 Components=11, 11, 11, 11, AIF=8, CAT=55
NeuronID=2 Components=15, 15, 15, 15, AIF=8 CAT=33
NeuronID=3 Components=20, 20, 20, 20, AIF=20 CAT=100
NeuronID=4 Components=13, 13, 13, 13, AIF=8, CAT=100

Note that if the vector to learn was [12,12,12,12], Neuron1 would shrink to 4 and Neuron2 to 12.

6.5.2 EXAMPLE 2

Vector Cmd Description 1st best match 2nd best match
Vector 1=
0,1,2,3,4,5,6,7,8,9

Learn as 1 The 1st vector is stored in a first
neuron

 Reco Its recognition generates an “exact
match”

CAT=1
DIST=0

CAT=0xFFFF
DIST=0xFFFF

Vector 2=

0,1,2,6,4,5,6,7,8,9

Reco The 4th components of the 2nd
vector is different by a value 3. All
other components are identical.
Still the 1st neuron recognizes the
second vector.

CAT=1
DIST=3
NID=1

CAT=0xFFFF
DIST=0xFFFF

Vector 3=

0,1,4,3,8,5,12,7,16,9

Learn as 2 The 3rd vector is stored in a second
neuron

 Reco Its recognition generates an “exact
match” with the second neuron.

CAT=2
DIST=0
NID=1

CAT=0xFFFF
DIST=0xFFFF

Vector 4=

0,1,2,3,4,5,12,7,16,9

Reco The 1st half of the 4th vector
matches V1 and the 2nd half
matches V3. Both neurons knowing
V1 and V3 recognize V4. Neuron 2
gives the best match because it is
closer with a distance of 6.

CAT=2,
DIST=6
NID=2

CAT=1,
DIST=14
NID=1

Vector 5=
0,1,2,3,4,5,6,7,16,9

Reco 2/3 of the components matches
the one of V1 and 1/3 matches V3.
Neuron 1 gives the best match with
a distance of 8.

CAT=1,
DIST=8
NID1

CAT=2,
DIST=12
NID2

NeuroMem Reference Guide 32/38

7 OPERATIONS IN SAVE_RESTORE MODE

Under the SR mode, the neurons become dummy memories which can be read and written sequentially. This SR
mode is essential to transfer knowledge bases between hardware platforms, or make backup prior to learning
additional examples.

7.1 SAVE AND RESTORE OF THE NEURONS’ CONTENT

The content of the committed neurons describes a knowledge which can be saved and restored. This
functionality is useful for backup purposes, but also to transfer and duplicate knowledge between NeuroMem
networks.

The two functions require to set the neurons in Save_and_Restore mode and point to the first neuron of the
chain. For each neuron, you can read or write its components, context, minimum influence field and active
influence field in any order, except for the category register which must be read or written last to point to the
next neuron in the chain. Finally, when the neurons have been saved or restored the last operation consists of
setting the neurons back to their normal operation mode.

 Save sequence

 Restore sequence

In both sequences, once the neurons are set to the Save and Restore mode by writing bit 4 of the NSR to 1, the
Category register must be the last register to be read or written per neuron since access to this register
increments the neuron pointer automatically. The order in which the other neuron registers (COMP, AIF, and
Context) are read is not important.

NeuroMem Reference Guide 33/38

7.1.1 IMPORTANT REMARKS

Note that in Save_and_Restore mode the last component is read and written to the COMP register and not to the
LCOMP register.

If it is known that all neurons hold a pattern with only M significant components with M<256, the number of
Read COMP can be limited to M, thus speeding the Save operation.

If an application does not use the notion of context, saving the context register might not necessary, saving one
clock cycle per saved neuron.

Saving and restoring the MINIF of each neuron is necessary if additional training will be done later to complete or
expand the knowledge. This will ensure that the degenerated status of the neurons is properly flagged if
appropriate.

7.1.2 WARNING ABOUT MERGING KNOWLEDGE

Appending several knowledge bases in Save and Restore mode is relevant only when the neurons of each
knowledge base are associated to different contexts and thus trained independently.
Usually, loading a knowledge to the neurons is preceded with a FORGET command, and even a function clearing
the 256 bytes of memory of all neurons using the Write TESTCOMP. This ensures that the first neuron to be
written in SR mode will be the first neuron of the chain.
If this precaution is not taken, then the first neuron to be written after switching the network in SR mode will be
the RTL neuron.
You need to be very cautious and clearly understand the consequences of appending the content of neurons to
an existing knowledge already residing in a chip. Refer to the next chapter about Knowledge Management.

NeuroMem Reference Guide 34/38

7.2 READING THE CONTENTS OF A SPECIFIC NEURON

Reading the contents of a specific neuron is made in the
following order:

- The first operation consists of setting the neurons
in Save_and_Restore mode and pointing to the first
neuron of the chain

- In order to point to the ith neuron in the chain, (i-1)
consecutives Read CAT are necessary

- You can then read the ith neuron’s components,
context, minimum influence field and active
influence field in any order. The category register
must be read last because the instruction
automatically points to the next neuron in the
chain.

- Finally, the last operation consists of setting the
neurons back to the normal mode.

NeuroMem Reference Guide 35/38

8 KNOWLEDGE BASE

8.1 FORMATTING KNOWLEDGE FILES

The content of the committed neurons describes a knowledge which can be saved and restored. This
functionality is useful for backup purposes, but also to transfer and duplicate knowledge between NeuroMem
networks.
For portability and re-use, the knowledge file must also be accompanied with a header or associated file
describing the feature extraction functions and parameters used to generate the models stored in the neurons
per context value.

8.2 MERGING KNOWLEDGE BASES

If you understand the powerful autonomous adaptive learning capabilities of the neurons, you will not be
surprised that merging knowledge bases built by different networks (residing or not in a same physical chain of
chips) cannot be as simple as appending two files together and should be handled with extreme caution.

8.2.1 CASE #1: INDEPENDENT NETWORKS

The 2 knowledge files, knA and knB, describe neurons trained with feature vectors of type A and B which have no
relationship, that is issued from different feature extraction functions or parameters. The original data source
used to extract these feature vectors can be the same but their dimensions have nothing in common.
Example #1:
 Visual Objects learned using Feature #1= monochrome subsample and Feature #2= color histogram
 Visual Objects learned using Feature #1= subsample at scale x1 and Feature #2= subsample at scale x5
 Persons identified with Faces learned with Feature#1 and Voices learned with Feature#2

Consequently, the learning of the feature vectors of type A has no impact on the influence fields of the neurons
holding feature vectors of type B, and vice versa.
The merging of the two knowledge files can be made simply under the Save and Restore mode.
The only imperative is that, if not already the case, the Neuron Context Register (NCR) of the neurons of knA and
knB will be respectively assigned to 2 different values a and b.

8.2.2 CASE #2: RELATED NETWORKS

The 2 knowledge files, knA and knB, describe neurons trained separately but with some neurons of knA featuring
vectors extracted with the same function and parameters as in knB, and/or vice versa.

NeuroMem Reference Guide 36/38

Consequently, if the feature vectors of knA were to be taught to the neurons holding the knB, there is a
possibility that these neurons will adjust their influence fields and commit new neurons, and vice versa.
The merging of the two knowledge files requires that all the models be re-learned with their categories. Another
imperative is that the models extracted with the function and parameters be taught under a same value of the
Global Context Register (GCR).
IMPORTANT: Merging the knowledge knA and knB will never be as rich and robust as re-learning the original
examples used to build these 2 knowledges. Indeed, knA and knB are already an expression of a decision space
which has been modeled by learning examples in a given sequence, with given values of the MINIF and MAXIF.
Whenever possible, it is recommended to merge the learning process rather than their resulting knowledge
bases.

9 NEUROMEM REGISTERS

The following table describes the 15 registers controlling the entire behavior of the neurons under the Normal
and Save-and-Restore mode.

 Description Normal mode SR mode
NSR Network Status Register RW W
GCR Global Control Register RW
MINIF Minimum Influence Field RW RW
MAXIF Maximum Influence Field RW
NCR Neuron Context Register RW
COMP Component W RW
LCOMP Last Component W
INDEXCOMP Component index W W
DIST Distance register R R
CAT Category register RW RW
AIF Active Influence Field RW
NID Neuron Identifier R R
FORGET Forget W
NCOUNT Count of committed neurons R R
RESETCHAIN Points to the first neuron W
TESTCOMP Test Component W
TESTCAT Test Category W

Refer to the description of your NeuroMem chip for a detailed description of each register, its dimension, default
value, bit flags and more.

NeuroMem Reference Guide 37/38

9.1 NEURON BEHAVIOR PER STATUS PER INSTRUCTION

The following table describes how the memory of the neurons is updated depending on its state in the chain of
neurons.

Memory Idle neuron Ready to Learn neuron Committed neuron
COMP 0 Do nothing Takes the value of the 1st Write

COMP occurring after a Write
LCOMP.

Can only be changed by a reset or
restore operation.
Reset the distance register

 The memory index is
incremented by 1 to point to
the next component.

The memory index is
incremented by 1 to point to the
next component.

COMP 1 Do nothing Takes the value of the next
Write Comp or Write LCOMP.

Can only be changed by a reset or
restore operation.

 The memory index is
incremented by 1 after a Write
Comp, or is reset to 0 after a
Write LCOMP.

The memory index is
incremented by 1 after a Write
Comp, or is reset to 0 after a
Write LCOMP.

…
COMP N Do nothing Takes the value of the next

Write Comp or Write LCOMP.
The memory index is reset to 0.

Can only be changed by a reset or
restore operation.

The following table describes how the registers of the neurons is updated depending on its state in the chain of
neurons.

Registers Idle neuron Ready to Learn neuron Committed
GCR Takes the value of

the Write GCR.
Takes the value of the Write
GCR.

Do nothing

 Current value is saved if the
neuron gets committed after a
Write CAT.

Can only be changed by a reset or
restore operation.

MINIF Takes the value of
the Write MINIF.

Takes the value of the Write
GCR.

Do nothing

MAXIF Takes the value of
Write MAXIF.

Takes the value of the Write
GCR.

Do nothing

DIST If its NCR=GCR, Accumulates the
difference between the pointed
Component and the input value
after each Write Comp or Write
LCOMP.

NeuroMem Reference Guide 38/38

CAT Value is written if no committed
neuron fires and has its own
category equal to value.
The neuron status switches from
RTL to Committed.

AIF If its NCR=GCR, Inherits the
smallest distance value of the
firing neurons

9.2 COMMANDS CHANGING THE RTL NEURON IN CHAIN

Memory cell index change Normal mode Save and Restore mode
Write COMP Index + 1 Index + 1
Write LCOMP Index =0
Write INDEXCOMP Index=k Index=k
Write TESTCOMP Index + 1
Write NSR Index=0 Index=0
Write CAT Index=0
Read CAT Index=0

	2 Introduction
	2.1 NeuroMem Key Features

	3 What is a neuron?
	3.1 Neuron part 1: A memory holding a pattern
	3.2 Neuron part 2: A distance evaluation unit
	3.3 Neuron Part 3: An associative recognition logic
	3.3.1 Firing stage
	3.3.2 RBF or KNN behavior
	3.3.3 Identified or Uncertain recognition
	3.3.4 Unknown recognition
	3.3.5 Winner-Takes-All

	3.4 Neuron Part 4: A learning logic
	3.4.1 Commitment of a new neuron
	3.4.2 Reduction of the influence field of firing neurons
	3.4.3 Learning the “0” or null category
	3.4.4 Degeneration of a firing neuron
	3.4.5 What happens when the network is full?

	3.5 Neuron Part 5: An element in an infinite chain

	4 Network architecture
	4.1 A chain of identical neurons
	4.2 Save and Restore of the neurons
	4.3 Network full

	5 Managing multiple networks
	5.1 Use of the context register
	5.2 Multiple networks for multiple experts
	5.2.1 Assigning a user-defined context
	5.2.2 Using Context 0
	5.2.3 Building inter-experts robust decision
	5.2.3.1 Example of combinatorial decision
	5.2.3.2 Example of hierarchical decision

	6 Operations in Normal mode
	6.1 Vector broadcasting
	6.2 Vector Learning
	6.2.1 Global settings prior to learning
	6.2.2 Reading the number of committed neurons
	6.2.3 Building a knowledge independent of the training sequence
	6.2.4 Controlling the generalization capabilities of the network

	6.3 Vector Recognition in RBF mode
	6.3.1 Response Type 1: Conformity detection
	6.3.2 Response type 2: Best-match
	6.3.3 Response type 3: Detailed matches

	6.4 Vector recognition in KNN mode
	6.5 Practice
	6.5.1 Example 1
	6.5.2 Example 2

	7 Operations in Save_Restore Mode
	7.1 Save and Restore of the neurons’ content
	7.1.1 Important Remarks
	7.1.2 Warning about merging knowledge

	7.2 Reading the contents of a specific neuron

	8 Knowledge base
	8.1 Formatting Knowledge files
	8.2 Merging knowledge Bases
	8.2.1 Case #1: independent networks
	8.2.2 Case #2: Related networks

	9 NeuroMem registers
	9.1 Neuron behavior per status per instruction
	9.2 Commands changing the RTL neuron in chain

