

ASIC-based Artificial Neural Networks for Size, Weight, and Power Constrained Applications

Senior Electronics Engineer Information Directorate Air Force Research Laboratory

Agenda

- Nano-Enabled Computing
- Neuromorphic Computing
- ASIC Artificial Neural Networks
- Computational Intelligence
 Near the Sensor
- Neuromorphic Systems and Nanotechnology for Network Security
- Concluding Remarks

Nano-Enabled Computing

Nano-science/technology is an enabling field:

- Multidisciplinary
- Applications across technologies

Concentrated on computational architectures:

- □ Size, Weight, and Power (SWaP)
 - Energy efficiency, capture, storage, and distribution
- Memristive systems
- Neuromorphic computing
- Nanoelectronics research and testing
- Development of hybrid platforms
- Massively parallel processors

Shaping The Future of Information

Beyond Moore's Law

Mission: Develop advanced computational capabilities through the exploitation of nanotechnologies

Developmental approach:

- Basic research/needs analysis
- Modeling and simulation
- Systems design
- Fabrication and testing
- Integration and demonstration

AFM image of gold-coated SiO₂ nanoparticles AFRL – J. Appl. Physics (2012)

Disciplines include:

- Nano-scale Engineering
- Solid State Physics
- Computer Science
- Material Science
- Biochemistry
- High Performance Computing
- Chemistry

Neuromorphic Computing

Computational Intelligence

Autonomously finding patterns and reason in data/environment

Mission: Develop neuromorphic architectures with enhanced autonomy and perception

Emulate the computational methods of the brain:

- Explore the mechanisms the brain uses for sensory perception, memory, and cognitive capabilities.
- □ Chip technology based on brain mechanisms and structure, unrestrained by von Neumann architecture.
- Demonstrate SWaP efficiencies

Multidisciplinary Approach:

- Brain function and design
- Artificial Neural Networks
- Large scale modeling
- Memristive system research
- Nano architectures

Disciplines Include:

- High Performance Computing
- Engineering
- Neuroscience
- Brain Imagery / Cog. Psych.
- Computational Neuroscience
- Computer Science

ASIC Artificial Neural Networks

Fully parallel, silicon based ANN chip

Two nonlinear classifiers:

- K-Nearest Neighbor (KNN)
- **Radial Basis Function (RBF)**

Scalable:

- Same processing time
- Low power requirements

Mature technology when compared to memristive or synaptic designs

Signature/Pattern Recognition

General topology of Radial Basis Function (Restricted Coulomb Energy Network)

Confidence Interval -- Distance Two methods:

 $D_{L\sup} = Max |V_i - P_i|,$ 2. Lsup

CogniMem

Plot of the CM1K ASIC 1024 identical & parallel neurons 256 byte signatures, 27 MHz

Future System Innovations:

- **Reconfigurable classifiers**
- **Non-volatile memory**
- 22 nm node fabrication
 - **Faster processing speeds**
 - More neurons/chip
- **Increased neuronal memory**
- **Undo training capabilities**

DISTRIBUTION A. Approved for public release; distribution unlimited. (Case Number: 88ABW-2012-4629)

Issues Facing Computing

Energy Efficient Systems

- DoD is nation's largest energy user
- Efficiency is a force multiplier
- High performance processing is in demand
 - real time, big data
 - Large power requirements
 - Large cooling requirements
- Autonomous Systems
- Computational Intelligence

Condor Cluster (AFRL)

1748 PlayStations, 500 Teraflops 300 to 320 kilowatts Confabulation/Brain-State-in-a-Box

Extreme Scale Computing

- Energy/Power challenges
- Biggest obstacle to Eflops (Exa) is power
- Modern supercomputer
 - 4 6 MW
 - Enough to power over 5000 homes
- Eflop computer requires ~ 1 GW
 - Hoover Dam
 - Nuclear Power Plant
- IBM WATSON 90 servers & 85,000 Watts
- Human Brain 20 Watts
- More challenging when applied to:
 - SWaP constrained applications
 - Mobile platforms
 - Processing at the sensor

An MQ-1 Predator unmanned aircraft (USAF)

MARCbot IV (Robotic Systems Joint Project Office)

Intrusion Detection for Remote and Mobile Platforms

The Sensor and Processing Disconnect

- Biological Model

 Many sensors with parallel operation

 Heavy on sensory processing

 Relatively weak individual processors
- ow SWaP
- A fly for example
 - ~ 80000 sensory input sites
 - 338000 neurons

 - 98% neurons for sensory perceptionExtreme flyer with little resource requirements

cue cards camera goal aser IR sensors whiskers

Brain Based Device in a dry land version of the Morris water-maze (The Neurosciences Institute)

Current Technology Model

- Few sensors
- Relatively few but powerful processors Millions of lines of code
- Little measurements--heavy calculations
- F-35 for example
 - Handful of sensors

 - Nearly 6 million lines of code
 3 computers each with 2 PowerPC chips
 Cooling required (uses SWaP)

F 35 Lightning II Joint Strike Fighter (USAF/AFMC)

Computational Intelligence Near the Sensor

Mission Extension through Energy Efficiencies

- Mobile wireless systems consume power
- Tedious data monitoring burdens analysts
 - Increased infrastructure required
 - **Higher costs**
 - Logistical burdens
- Hardware-based artificial neural networks on the platform
 - Communications hardware placed into standby
 - **Frees the Analyst**
 - **Extends mission life**
 - Notifies proper channels when triggered

Screenshot showing the GUI interface

Change Detection System Test

- Laboratory entrance way monitored by video for 36 hour period
- Simple single neuron network Trained to recognize closed door
- Notifies security upon unrecognized signature
- Identifying 26 intrusion events

 Zero false positives

 - Zero missed occurrences.

Processing Methods

Single Instruction Multiple Data (SIMD)

- Multiple processors performing the same operation but staggered in time
- Data throughput parallelism
- Banks of identically trained neurons
- Increased data rates
- Utilize surplus neurons for increased speed

The SIMD Process

Multiple Instruction Single Data (MISD)

- Many operations on same data at the same time
- Functional parallelism
- Each neuron in a bank has it own unique target signature
- Increased functionality and speed

Multiple Instruction Multiple Data (MIMD)

- Many sensors processed simultaneously
- Perceptual parallelism
- Distributed memory
- Biologically inspired

Serial Processing

- Allows for hierarchical structures
- Redundancy
- Decision trees
- Self learning

Neuromorphic Systems and Nanotechnology for Network Security

Network Monitoring

- Single Instruction Multiple Data for high speed monitoring
- Area of influence tuning to detect slightly altered signatures
 - Many attacks are alterations to known signatures
 - Detect key signature characteristics to alert analyst
- Energy efficient methods (~25 watts for 100,000 neurons)
 - Field applications
 - Mobile platforms
 - Security on the deployed system
- Exploit ability to self-teach and learn from experience & user interaction
 - Field trainable
 - Systems can teach and modify each other

Prototype of 1024 neuron data monitoring system using a CogniMem PM1K, Arduino microcontroller, data interface circuit

Unique System Identification

- Memristor-based unique chip identifier
- Physical Unclonable Functions (PUFs)
- Random number generator
- System/chip/device identification

Probe station & B1500A analyzer

100,000 Plus ANN

- Test & Evaluation big data analysis
- Control system for complex platforms
- Same technology for network security
- Find a signature among 100,000 in 10 µs
- Scalable to 1 million+ neurons
 - 0.13 Peta operations per second equivalent
 - 250 mW per 1,000 patterns

Collaborations with Services, Agencies, and Institutes

AFRL Directorates

- Space Vehicles Directorate
- Materials and Manufacturing Dir.
- Sensors Directorate

Industry

- SEMATECH
- Bio Inspired Technologies
- M. Alexander Nugent Consulting
- CogniMem Technologies, Inc.
- ICF International

Academia

- Boise State University
- Cornell University
- Polytechnic Institute of New York
- Rice University
- Union College
- University at Albany (CNSE)
- University of Pittsburgh

AFOSR

- Big Data Neuromorphic Computing
- Nano-memristor R&D
- Nano for Compressive Sensing

OSD

The Neurosciences Institute (NSI)
 Brain-Based Devices for Neuromorphic
 Computer Systems

DARPA

- SyNAPSE Program
- Physical Intelligence Program

ARL

Network Science Division
 Adelphi Laboratory Center
 Network security
 Intrusion detection

Concluding Remarks

- Initial phase focused on exploiting emerging memristive technology
- Additionally, commercial off the shelf technologies are being utilized to
 - Address near term applications
 - Understand architecture and system level issues
 - Guide future memristive technology research and development

Application focus

- Addressing shortfalls of the processing, exploitation and dissemination chain
- Enhanced computer architectures for the test and evaluation community
- Computational intelligence closer to the sensor
- Cyber
 - Network monitoring
 - Unique system identification
 - Mission resiliency
 - Risk mitigation / vulnerability reduction