

**Engineering Diploma of the ENSPS Master IRIV Nanophotonics** 

Thibaud MAGOUROUX University year 2010

#### « DEVELOPMENT OF A MINIATURISED WAVEFRONT SENSOR BASED ON A **NEURAL NETWORK** »



**Supervisors** Marc Eichhorn **Alexander Pichler** 









# OUTLINE

- Possible applications of wavefront sensors
- Wavefront sensors : state of the art, problem and specifications
- Real-time embedded approach
- New miniaturised wavefront sensor : my contribution
- Conclusion and outlook













#### **SPECIFICATIONS & TASKS**

- Miniaturisation and optimisation of an ISL concept of a stand-alone, real time and low cost wavefront sensor
- Validation and tests of the new prototype
- Simulation of the effect of scintillations and physical sensor defects on the quality of the results











#### SHACK-HARTMANN WAVEFRONT SENSOR

# Microlens arrayCCD camera





Allows active control of the wavefront:

Generation of plane wavefronts

Propagation and target illumination efficiencies

Image enhancement (e.g. astronomy)

Generation of specific wavefronts for metrology and sensorics









#### **MEDICAL APPLICATION**

#### o Ophthalmology: detecting eye aberrations











#### WAVEFRONT MEASUREMENT

Characterisation of the wavefront in the Zernike base











## WFS : STATE OF THE ART

**Distorted wave front** 

Classical approach :

Shack-Hartmann Sensor

spot displacement ~ local phase front slope

numerical integration





contribution coefficient



**Problem**: High quality & real time  $\rightarrow$  highresolution  $\rightarrow$  powerful computer  $\rightarrow$  significant **volume, price** and **power** consumption









#### **ISL NN WAVEFRONT SENSOR PATENT**



PC-based wave front calculation



Challenge: fast autonomous smart sensor with no PC in the loop

- First proof of concept prototype needs to be optimized:
- Communication between each part of the board
- Clock frequency improvement by shortening electrical wire lengths
- From the prototype towards industrial product



- Specification of a new miniaturised wavefront sensor platform (→V1KU)
- Technical comparison of existing prototype \ V1KU
- New FPGA firmware for embedded applications
- Performance and quality analysis

#### Bonus

- Complementary studies to fulfill new questions and requirements:
  - Specific DLR performance analysis



![](_page_11_Picture_0.jpeg)

![](_page_11_Picture_1.jpeg)

![](_page_11_Picture_2.jpeg)

![](_page_11_Picture_3.jpeg)

#### **NEW FPGA FIRMWARE**

New components imply new FPGA firmware

- Flash memory access (restore NN topology)
- Communication protocol with the computer relying on high speed USB (previously RS232 to USB)
- →Parallel computing on a parallel structure using Verilog programming language

![](_page_11_Picture_9.jpeg)

![](_page_11_Picture_11.jpeg)

![](_page_12_Picture_0.jpeg)

![](_page_12_Picture_1.jpeg)

![](_page_12_Picture_2.jpeg)

![](_page_12_Picture_3.jpeg)

#### VERILOG HDL

 Used to describe a digital system, a network switch, a microprocessor, a memory or a flip-flop

![](_page_12_Figure_6.jpeg)

![](_page_13_Picture_0.jpeg)

![](_page_13_Picture_1.jpeg)

![](_page_13_Picture_2.jpeg)

![](_page_13_Picture_3.jpeg)

#### VALIDATION AND TESTS

Comparison of focal distances (between a point source and sensor surface) :

- Measured with a ruler •
- Calculated from the determined Z<sup>0</sup><sub>2</sub> polynomial from the SHS

![](_page_13_Figure_8.jpeg)

![](_page_14_Picture_0.jpeg)

![](_page_14_Picture_1.jpeg)

![](_page_14_Picture_2.jpeg)

![](_page_14_Picture_3.jpeg)

#### VALIDATION AND TESTS

Comparison between classical and neural network a algorithm without sub-pixel optimization

![](_page_14_Figure_6.jpeg)

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_1.jpeg)

![](_page_15_Picture_2.jpeg)

![](_page_15_Picture_3.jpeg)

#### VALIDATION AND TESTS

Comparison between classical and neural network a algorithm with sub-pixel optimization

![](_page_15_Figure_6.jpeg)

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

![](_page_16_Picture_3.jpeg)

#### VALIDATION AND TESTS

#### Comparison between neural network algorithm with and without sub-pixel optimization

![](_page_16_Figure_6.jpeg)

![](_page_17_Picture_0.jpeg)

![](_page_17_Picture_1.jpeg)

![](_page_17_Picture_2.jpeg)

![](_page_17_Picture_3.jpeg)

#### VALIDATION AND TESTS

Influence of saturation Saturation: comparison between neural network

![](_page_17_Figure_6.jpeg)

![](_page_18_Figure_0.jpeg)

http://www.astrosurf.com/cavadore/optique/shackHartmann/index.html

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_1.jpeg)

![](_page_19_Picture_2.jpeg)

![](_page_19_Picture_3.jpeg)

# **TEST PROCEDURE**

- Image acquisition (C #)
- defect simulation (Matlab)
  - Single cell defect
  - Cluster defect
- Load images with simulated defects (C#)
- Wavefront reconstruction with a neural algorithm simulated on PC (C#)
- Results saved in an Excel file (C#)
  - Zernike polynomials
  - Images of the reconstructed wavefront

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_1.jpeg)

![](_page_20_Picture_2.jpeg)

![](_page_20_Picture_3.jpeg)

#### **EXPERIMENTATION RESULTS**

#### **Reconstruction of the wavefront** without simulated defects

![](_page_20_Picture_6.jpeg)

**Reference** wavefront (no cell defect)

 Same algorithm Only one parameter changed

Reconstruction of the wavefront with simulated defects and varying size

![](_page_20_Figure_10.jpeg)

28/12/2012

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_1.jpeg)

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

## **ERROR QUANTIFICATION**

Influence of the 'radius' on the relative error

![](_page_21_Figure_6.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_1.jpeg)

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

# **PROJECT CONCLUSION**

• The specifications are successfully met

- Verilog firmware is completed
- Miniaturized prototype available with LCD display
  - tested and validated
  - ready for industrialization
- Test and validation tools

Complementary study for DLR achieved

One toolbox for defect simulations is available

![](_page_22_Picture_14.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_3.jpeg)

- Perspectives:
  - Influence of the NN parameters
    - Improvement of NN technology (simulation)
  - Further improvements of FPGA firmware
  - Packaging and advertising flyer
  - IEEE publication
- Multidisciplinary study
  - Specific optics, electronics and programming skills
    - Shack-Hartmann sensors
    - FPGA, memory, USB, NN technologies
    - Real time requirements
  - International team working : ISL, DLR, CEA

![](_page_23_Picture_17.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_2.jpeg)

![](_page_24_Picture_3.jpeg)

# Thank you for your attention Very pleasant team and

#### exciting subject

![](_page_24_Picture_6.jpeg)

![](_page_24_Picture_7.jpeg)

![](_page_24_Picture_8.jpeg)

![](_page_24_Picture_9.jpeg)