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ABSTRACT

The last generation of infrared imaging aircraékses and trackers uses pattern recognition
algorithms to find and keep a lock on an aircrafthe presence of decoy flares. These algorithms
identify targets, based on the features of theouarbbjects in the missile’s field of view. Beoaus
modern both aircrafts and missiles fly faster tsannd, speed of operation of the target identifier
is critical. In this article, we propose a targgtognition system that respects this time comstrai

It is based on an artificial neural network implereel in hardware, as a set of parallel processors
on a commercially available silicon chip calledI&8, for Zero Instruction Set Computer. This
chip would be integrated in the infrared missilels and tracker. We describe the
characteristics of the images that the image psiegsnodule of this seeker and tracker extracts
from the infrared video frames and show how to troes from these translation and rotation
invariant features that can be used as input to¢leal network. We determine the individual
discriminating power of these features by consingctheir histograms, which allows us to
eliminate some as not being useful for our purpdseally, by testing our system on real data, we
show that it has a 90 % success rate in aircrafé-fidentification, and a processing time that
during this time, the aircrafts and missiles wabi traveled onlga few millimetres Most of the
images on which the neural network makes its mestaice seen to be hard to recognize even by a

human expert.
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List of abbreviations:

ZISC: Zero Instruction Set Computer;

DRDC: Defence Research and Development Canada;

[IR: Imaging Infrared,;

DSP: Digital Signal Processing;

RCE: Reduced Coulomb Energy (neural network);



ZISCO036 zISC with 36 neurons:;
ZISC78: ZISC with 78 neurons;
FPGA: Field Programmable Gate Array;

PCI: Peripheral Component Interconnect;

RBF: Radial Basis Function (neural network);

1. INTRODUCTION

Automatic Target Recognition is a major field o$earch within the larger
domain of Pattern Recognition. It is itself diviblie sub-fields that correspond to
the type of sensors used, as sonar, radar, infreieb imagers, and to the types
of targets to identify. Unfortunately, as pointad in Roger, Colombi, Martin,
Gainey, Fielding, Burns, Ruck, Kabrisky and OxI&8], a general-purpose
automatic target recognition system does not eXisiis fact is actually true also
for the whole domain of Pattern Recognition in vhilkere exist still a wider
range of different techniques. Indeed, Duda, Hadt Stork [19] (in Chapter 9)
also explain that there is no answer to the questioto which classifier is the
"best". This fact is often stated as a "No FreedtuTheorem™ that says that there
is no context-independent classification method shauld always be favoured
over the others. In principle, any algorithm cancbnsidered a candidate while
in practice, some methods are better at some gpggies of problems than
others. We can't really know in advance how gopdréicular method will be

until it is tested on typical data that corresptmthe practical application

considered.

We note that when studying a particular classiftas, the normal practice to

compare its performance to that of other ones instite same domain. However,
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when it comes to military systems that are pregergéd or under development,
strict secrecy surrounds the methods that are sugsessful, with which such a
comparison could be made, because these are pydbisse used in deployed
systems. Therefore, in studies such as the presentve are left with
demonstrating the potential of a technique thasuspect to be very promising.
As said in Roger et al. [58], studies as this aae @nly be considered as a proof
of concept; its true validation can only be donewthe actual system is fielded
and proven "under-fire". In this article, we wilhly report the results of tests
that we have conducted with a neural network impleted in hardware in order
to determine whether it could compute fast enoughwith enough precision to
be a possible candidate for incorporation in araieid seeker and tracker for an

anti-aircraft missile.

1.1 On Infrared Missile Seekers

According to Air force Link [2], a web site of tl@ffice of the US Secretary of
Air Force, the first infrared missiles was deployed 953; it is the AIM-9A that
evolved into the still used Sidewinder missileitis infrared guidance systems
simply made the missiles home in on aircraft engixigausts. They were only
effective at close range, could not engage taete to the ground, and did not
have night-time or head-on attack capability. Tbat-seeking missile provided a
major advantage, called "fire-and-forget", in ttie pilot could launch it, then
leave the area or take evasive action while theilaiguided itself to the target.
IR-guided missiles are difficult to detect becatissy do not emit any signal as

would radar homing missiles for examples.



The advent of the IR missile set off a searchdohhiques to defeat the “optical”
seeker system in these weapons. As recountedtert®n [69], many of the
active countermeasure projects were initiated énli960s. Their aim was to
decoy the relatively simple, but effective, IR hamiechnology. On-board
systems, known as jammers, as well as various gunatc devices known as
flares, were developed to confuse the target-trackistem in the missile’s
seeker. Other measures were also taken suchegleg the jet pipes in fighter
aircraft to mitigate the effects of an interceptimna heat-seeking missile. This
was the beginning of a classic “cat and mouseVagtbetween the measures and

the countermeasure, which continues to this day.

Goddard [24] and Koch [40] present the state ofaitién present day
countermeasures, the extent of their informatiandef course limited to what is
available from unclassified sources. Goddard goanit that initially flares were
almost 100% effective against the first generatibmissiles. Upon deploying
flares, the aircraft would pull away at a sharplarigpm the flare, toward which
the missile would be attracted, and reduce itsrengower in an attempt to cool
its thermal signature. The missile's seeker was tonfused by this change in
temperature and flurry of new signatures, and thade the missile follow the

flare instead of the aircratft.

In response to the introduction of flares, the ifessanufacturers had to imagine
some counter counter-measures (CCMs), which wepeovements in the
infrared seekers. One of them is a rise rate erigjgat senses the rapid rise of
radiated energy of the flare and compares it with@eptable rise rate for an

engine change of power. If it exceeds that raentfssile ignores the scene for
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some time, hopefully until the flare is outside fiedd of view of its seeker while
the aircraft is still there. Another techniquedsaladvantage of the fact that flares
generally deploy to the rear and move downwardis véispect to the aircraft, due
to the drag that decreases their velocity anddheefof gravity. Thus, a reject
sector can be created in the field of view of thesite that reduces the interest of
IR sources in this region about the aircraft. $beker can also take into account
the rate of separation between the flare and tigettaircraft. Finally, the seeker
can use a two-colour detector to spectrally disicrate between the decoy and the
aircraft exhaust plume, by comparing their lumitpat two different wave
lengths simultaneously. A typical flare burns @@ C while an aircraft engine

is in the 600-800 range; this allows the seeker to recognize ity aiir target.
According to Titterton [69], the effectiveness Bf iissiles was remarkable; they
had been responsible for the majority of aircragsks since their introduction
into service during the 1960s, until the 1990sm8gtatistics suggest that heat-
seeking missiles have been responsible for more&88&o of all combat aircraft

losses over the last 40 years according to Hersk{®8)].

In reaction to these developments, the flare mawifers took measures to
improve the decoy's success against the missitey tevised a technique to
adjust the burn profile of the flare energy ovex time period it is burning. Thus,
for example, the intensity of the flare could bedm#o rise very fast with a short
burn period when it was destined to a fast jetahbee its flares separate quickly
from the aircraft due to its speed. Aerodynamace$ have also been developed
to counter the trajectory sensing ability and safp@m rate trigger of some
missiles. Fast aircrafts, such as the F-18, carflaes that are powered by

thrusters that make them move forward, out of thg of the aircraft. Dynamic
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flares can also be made to move with a speed timaicsithat of the aircraft.
Towed flares exist that can be effective agairs&t rate discrimination. Because
their motion is the same as that of the aircraffte knatical discrimination will not
help identify them. Koch [40] and Titterton [69pmtion IR missile defeat
mechanisms other than flares that are alreadyarsg#dome that could eventually

be developed.

This sophistication of flares makes it clear thdtas also become more and more
challenging to produce seekers that can effectidigriminate between the
aircrafts and the flares they deploy, that is taigseIR counter-countermeasures
(IRCCM). Titterton [69] describes how the firsttmal seekers used a single
infrared detector to sense the position of itsaard hese had a spinning reticle or
mechanical modulator, in the focal plane of theaapsystem. This reticle
consisted of a series of opaque and transparemteseg that created the
modulation, a simple one of which is shown in Feglir The reticle created a
series of time-referenced pulses that were trawliato the position of the
designated target. It also provided the importanction of spatial filtering that
eliminates extended targets, such as clouds. Hamg, Jahng, Seo and Choi
[28], Goldberg [25] and Hong, Jahng, Doo and CBai fespectively describe the
principle of operation of the fixed reticle scarlser, the conical scan seeker and
the concentric annular ring scanner. That techgyoleas followed by the more
sophisticated one of the rosette scanning seekechvis described in details in
Jahng, Hong, Han, Choi [35], Dinaki, Shokouhi, Soitadeh [17]. The latter

two references mention that in 2008, the rosetiarsag seekers were still
actually used in many missiles; the popular StinyeRaytheon [68] is one of

them. This system also uses a single detectorstipaibvided information about
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the scene in front of the missile through a smatidew that moves along the path
of a rosette pattern, as shown in Figure 1. Mangiss have been conducted and
are still being conducted on algorithms that waefféctively identify aircrafts

and flares with that system, some of which arengaHong, Han, Choi [35],
Jahng, Hong [33], Jahng, Hong, Seo and Choi [36¢,[®h, Jahng, Hong, Choi
and Seo [18], Dinaki, Shokouhi, Soltanizadeh [B4ltanizadeh and Shokouhi

[63].

Figure 1: On the left-hand-side: reticule mask and on ifetthand-side: rosette scan used
initially in infrared seekers.

Those seekers that used a single IR detector beeently limited in speed by the
fact that they require a mechanical device to ptedtie scan. Thus, for example,
Soltanizadeh and Shokouhi [63] mention that 10 ragequired for the complete
rosette to be scanned. Present day progressefsared, electro-optic and
computing technologies make it possible to usestaggekers and trackers with a
complete focal plane array of IR detectors thatlpoes instantaneously an image
of the whole field of view. The signals producscdlbese detectors are
interpreted as grey-scale values for corresponglixgjs in an image. This

complete image of the field of view made it is polesto use more complex



features of the objects seen, in more sophisticatgutithms, and thus have a

higher probability of success in differentiatingween the countermeasures and

the platform they protect. Many missiles existapavith that technology, such as

the AIM-9X that is the successor of the Sidewinassile [ 2] and that presently

arms the F-16 and F-18 fighters. Sagem Défenserig&cSafran Group [51]

sells the MICA infrared seeker for air-to-air misghat, they claim, offers a high

protection against infra-red countermeasures thralig use of dual band infra-

red imaging, highly sophisticated image and sigihgdrithms. Table 1, taken

from Koch [40], gives an overview of the evolutiohlR seeker technology.

Evolution of IR seeker technology
Gen.| Signal Processing Detector Missile Example Ref.
Type

1 Reticle, Spin Scan, Single Color | SA-7, SA-9, SA- | [26]
Amplitude Modulation 13, AIM-9B

2 Reticle, Conical Scan, | Single Color | SA-14, SA-16, AA}[26]
Frequency Modulation. 8, AIM-9L/M

3 Rosette Scan, Conical | UV /IR RIM 92B/C, SA-18| [26]
Scan
Cross Array, Conical Single & AA-11 [26, 34]
Scan Dual Color
Concentric Annular Ring|, Single Color | AA-10 [26, 31]
Conical Scan

4 Focal Plane Array Single Color  IRIS-T [50]

5 Focal Plane Array HyperspectiaNone yet




Table1: Evolution of IR seeker technology. The firsturon is the generation number, the
second column is the method of detection of theadjghe third column is the type of IR detector
used, and the fourth column gives examples of tasssising the corresponding technology. The
last column gives a reference to that technology.

The availability of a whole image of the scene méhat all the usual techniques
of artificial vision could be adapted to this pretnl of target recognition. Many
studies existed already in the domain of infragedet recognition for land
vehicles in background clutter. Roger, Colombirtiha Gainey, Fielding, Burns,
Ruck, Kabrisky and Oxley [58] reviewed conceptatgded with the processing
of military data to find and recognize targets.ef¥hecognized that the target
identification process starts with pre-processinfjli@ring to suppress noise and
enhance spatial discontinuities or edges. Thislliswed by segmentation, a
process that isolates the blobs that correspotiietobjects present in the scene.
Once this has been done, features are extractedtifi® blobs, care being taken to
use the smallest possible number of features, wiaske to be selected for their
strong discriminating power. A classifier is thtemned with some data and then
tested on new data it had never seen before. t8ilg52] examined different
methods of generating features to use for IR tadgettification: standard
features as intensity, shape and Fourier coeftisjéfarhunen-Loéve transform
and discrete cosine transform features. He megtasparticularly useful
intensity and spatial features such as the ratabgct length to its width, the
standard deviation of pixel values, the maximuransity of the object pixels, the
complexity, which is the ratio of the border pix&dsthe total number of pixels,
and various other intensity and shape featuresnyMéathese features are actually
the same as those we use in the present studgst&uk [62] compared the

efficiency of different sets of features used gmitrvectors for a three-layer back-



propagation neural network. He found that the ga@®n success rates were
comparable with the different types used whenniévidual features making up
the input vectors were carefully selected for tldéscriminating power. Hung,
Webb, Elliott and Chandler [32] point out that camibg consecutive frames will
improve the quality of the images and also prodyeamic characteristics of the
objects in the field of view, which can have a sgaliscriminating power. In
these studies, the features were extracted frobshiothe image that had been
segmented out as regions of interest. Other appesaalso simply use features
extracted from image patches of a given size, agdh Chan, Der and Nasrabadi
[9], Khan and Alam [37], Bhuiyana, Alam and Alkahf&], Khan and Alam

[38], Singh, Pettersson, Karlholm, Berndt and Bsirim [67].

There has been much consideration given to thdgobf enhancing the image
of the target and filtering out the clutter. Kramd Alam [37] mention statistical
modeling, Fuzzy logic, Fourier analysis, Gabokefilhg, and wavelet transform of
image patches as possible approaches. As poiatad Beng, Shang-qgian, Da-
bao and Wei [21], an advantage of using wavelet eragas features is that such
features are invariant under translation, scalimy@rientation transformations.
Khan and Alam [37] used the wavelet transform d€pes of an image to provide
the feature vectors. They train a probabilisticraénetwork [66] with patches
data extracted from the first few images of a videquence and showed that this
neural network can thereafter track the targehénréest of the sequence.
Bhuiyana, Alam and Alkanhal [3] considered the saraeking problem and
solved it with the help of a special correlatidtefi that points out the designed
target in subsequent video frames. Khan and AB8hdombined the two

methods described above to solve the same taegdirig problem. Singh,
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Pettersson, Karlholm, Berndt and Brunnstrom [6&Jdusnage correlation and
Der and Nasrabadi [9] used a multilayer perceptieural network to discriminate
between the target and the background clutter.r Téegture vectors were
extracted from patches of the image and their déoelity was reduced by

Principal Component Analysis.

Different features than those mentioned above h#seebeen considered to
identify the targets. For example, Yu and Azimdfadi [73] proposed to use the
temporal tracks of moving objects to recognizetiigets. These tracks are
constructed by computing a correlation betweenessgige frames of a video
sequence. This method allows for the detectidangfets even in very cluttered
environments because it is based on recognizingitii®mn of the target instead
of its intrinsic attributes. They used a neurdlek to classify the ground
vehicles seen, based on their acceleration anduthvature changes of their
trajectory. Nair and Aggarwal [54], Zhao, ShahpC Nair and Aggarwal [75],
Nair and Aggarwal [55] proposed an object recognitnethod based on the
obect's individual parts. They devised a hieraralecognition strategy that uses
salient object parts as cues for classificationr@edgnition. They point out the
advantage of this approach in situations wherektects are partially occluded.
Zhang, Zhong, Yan and Wang [74] considered theghate of an anti-aircraft
missile homing on its target, during which the sitze¢he target image increases
rapidly, which makes it harder to follow with astiard correlation approach.
They suggested using the corners of the targeteraagharacterizing features in

this situation.
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In most of the above mentioned studies, the tadgsitification methods were
tested on real video sequences taken from the akalf Army Missile

Command (AMCOM), the objects represented being mploxehicles such as
tanks and trucks. Furthermore, they were notyealhcerned with the real-time
aspect of the problem that becomes so critical faish moving objects as aircrafts

and missiles, as we consider in our study.

Image correlation and artificial neural networksagly stand out, in the published
literature, as the two main methods used for tadgettification and tracking.
However, because the focal plane array imagingessekpresent the latest
developments in IR missile seeker technology, farimation is publicly

available about the particular image processingpattern recognition algorithms

they use.

The present study can be seen as the continudtibatan Cayouette's MSc
thesis [7] and Cayouette, Labonté and Morin [81 tumsidered the same aircraft-
flare discrimination problem we deal with here.isfformer study used a
probabilistic neural network [66] to classify thatigrns, seen in a single infrared
video frame, as corresponding to aircrafts or far€hey reported success rates in
the 90-95% range. Labonté and Morin [42] then used templeatlires of the
objects, extracted from a few successive video désgrto discriminate between the
aircrafts and the flares. They report a succdssafe®2-1006. However, these
studies used a probabilistic neural network that vealized in software on a
sequential computer. Thus, although they estaddishe discriminating power of
the neural network, they did not yield a real tsgstem. In the present study we

show that a neural network realized in hardwarescdve the same problem in

12



real time. This neural network is a Reduced Cobl@&mnergy (RCE) neural
network, which is a particular type of Radial Basisctions (RBF) neural
network, that was devised by Leon Cooper et al, f@6pattern identification.

As can be seen in Bishop [4] and Duda, Hart andk31®], this neural network
stands out among the various artificial neural wekwmodels that serve for
pattern recognition by its relative simplicity. idtthis feature that lead to its being
very early realized in hardware as the ZISC, whkiemds for "Zero Instruction

Set Computer" [61].

1.2 IR Seeker Test Bed

Morin and Lessard [52] describe the simulator @dcal plane array infrared
imaging seeker and tracker that has been develipibe Defense Research and
Development Canada establishment at Valcartiarputpose is to test and
improve the individual components of operationalkses and trackers. Itis a
good example of the different modules that congtisuch systems and their
mutual interactions. This seeker and tracker hasfeared video camera that
operates in the 3 to 5 um waveband. It is mouotethotorized gimbals that are
controlled in real time by a series of fast prooess This camera produces
images on a 25&56 matrix of detectors in its focal plane, each ohwhich
corresponds to a pixel in the digital image. Eaicthese video frames is then
sent to a series of high speed computing modulbs firocessed in real time in
order to identify the targets in the seeker andkeds field of view. When a
target of interest is recognized and selectedkimgaommands are sent to the
control system that moves the gimbaled platforrasto keep the camera locked

on that particular target. Figure 2 illustratessitructure.
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Figure 2: Basic configuration of the infrared seeker ardker.

1) The block in the upper left-hand corner inddsathat the image from the
camera is sent to a convolution filter that aimsatecting for the non-uniformity
of infrared detectors' sensitivity. This filterisgrves to facilitate the image
segmentation and subsequent target detection ligiregthe noise and
attenuating the background clutter. The relatffieiency of various filters has

been examined in Morin [53].

2) The intensity histogram of the filtered imagehien computed and used to

adjust automatically the gain for the intensityeleof the images.

3) The image is then sent to an image processodufa that segments the
objects present in the image into blobs. A singbd@rithm that works well here
and that we have used for the present study insdiaply defining them as the
continuous domains in the image in which the inteassof the pixels exceed a
certain threshold. Intensity and spatial charasties of the blobs, which we

describe below, are then extracted.

4) A target selection algorithm uses these feattoradentify each one of the
blobs and determine which one is the aircraft aokr
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5) The coordinates of the centroid of the blotrdok are fed to the tracker
controller that commands the platform servomechani$his turns the platform

so that the camera points toward this particulab bl

The arrows in Figure 2 indicate the flow of infotioa in the seeker tracker. As
can be seen, there are many feedbacks betweeiifétert modules. One of
their function is to re-adjust various thresholdd &lters so as to optimize the

guality of the target features extracted from thades. Figure 3 illustrates the

image pre-processing stage and segmentation iobs bl

(a) Image produced by the IR (b) Image processed with a  (c) Segmentation in three blobs
camera. double-gated filter.

Figure 3: Pre-processing of the infrared image and its segation into separate blobs.

1.3 Problem Statement and Proposed Solution

The most difficult and critical process in the intagseeker and tracker described
above is the fourth one, in which the nature oheate of the blobs has to be
recognized from a set of their features. Thifiésgrocess that we propose to

realize with the ZISC hardware artificial neuratwerk.
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In general, the infrared images seen by the cacara&ontain part of the ground,
some clouds and the sun, besides aircrafts, ftavéghe bare sky. Although we
did not test it explicitly, the tests we did witincaafts and flares showed that the
trained neural network would easily dismiss the @simot being an aircraft.
Indeed, none of the flares that deployed in sphkpatterns were ever mistaken
for an aircraft, mainly because the blob aspeat iatused as a discriminating
feature. Because the present study is a proadrafept, we used only images in
which the clutter had been eliminated and conctadran the problem of
discriminating between the aircrafts and the flardge considered that
demonstrating the efficiency and speed of the Zi8@al network at this task
constituted a first step. If successful, it wothldn be worthwhile to endeavor to
generalize our system to include other objectfiadtto be noted also that, in most
situations, when the missile is getting close $aitcraft target, there will only be
the aircraft and its flares in its rather smalldief view. In that sense, the aircraft
and flare discrimination problem is also the mogtil one. In the present
study, we also used only static features of theggsaeven though dynamic
features also have strong discriminating powehasva, as was demonstrated in
Labonté and Morin [42]. We shall consider dynaofiaracteristics in a

subsequent study.

Of course, when an aircraft deploys some flaresetis more than one blob in the
field of view of the missile: the one for the aaftrand one or more for the flares.
Thus, there will be many blobs to analyze in oreewgiframe, while our system
analyses only one of them at the time. This sibuatan easily be dealt with by
having many identically trained ZISC neural netvgnkounted in parallel in the

target seeker and tracker, which would simultanyceech identify one of these
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blobs. At the present stage of development, n@enat concerned with the
particulars of the physical connections and intedaole communication
protocols. These will be considered only oncentlegit of our ZISC target

recognition module has been clearly demonstratatsey.

The data we used for this study were extracted friol@o sequences provided by
the Defence Research and Development Canada (DB&&bhlishment at
Valcartier, QC. These video sequences were talkérew IR video camera that
was on the ground and showed various aircraftoogey different types of
flares. The aircrafts moved in different direc8omith respect to the observer,
and are seen at different distances. In our testsised 1480 blobs that
corresponded to an equal number of single aircaatissingle flares. (The feature
vectors for these blobs can be obtained by enaih ihe first author of this
article.) Most of the images are of the qualitytmse shown in Figures 2 and
13. Although, in some of these images, as in Figuiiei8 relatively easy for
human observers to recognize the aircraft, in sotiers it is not, as can be seen
in Figure 14. The data we had at our disposal Wenefore rather challenging

for an automatic target identification system.

1.4 The ZISC and the Cognimem

According to the ZISC Technology Reference Guidg [page 2), the ZISC is a
data processing chip that has been developedyjdigtGuy Paillet, founder of
Silicon Recognition in California and NorLiTech &ipan, and IBM. Its
development took place at the IBM Essonnes laboratear Paris, France, and

was first introduced to the public market in 199¢is chip is a complete
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realization in hardware of the Reduced Coulomb &neeural network [56]. In
Section 4, we shall describe the version of therélyn that is implemented in
the chip. The first ZISC chip, the ZISC036, congal 36 neurons and the second
version, the ZISC78, 78 neurons. One of the faugndompanies, Silicon
Recognition, has mounted the chips on PCI boandgesonal computers. Our
research used one such board, the EZB 624 PClhwiais eight ZISC78 chips,
giving a total capacity of 624 neurons. This bagsb has its own memory and a
Field Programmable Gate Array (FPGA). It is showRigure 4a. The portion
of the Silicon Recognition company that manufaaduaed supported the EZB
624 PCI has been sold to an Italian company c&lf@8. It was from EOS that
we purchased the board for this research. In 280Qy,Paillet presented a new
chip with 1024 neurons called a Cognimem. Thip éhipresently produced by
Recognetics Ltd in Suzhou, China. It is showniguFe 4b and its properties are
described in the Cognimem information sheet [Ile ZISC and the Cognimem
chips are designed to be cascaded to create mamwadrks with a virtually

limitless number of neurons.
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3a 3b

Figure 4a: EZB 624 PCI board. The eight ZISC78 chips thakenthe 624 neurons neural
network are visible to the right of the boar&igure 4b: The Cognimem chip with 1024 neurons.

Eide et al [20] (page 3) mention that the ZISC “hasen designed for cost-
effective recognition and classification in reahdi.” Its effectiveness comes from
its being a computing device dedicated to a sipghicular task and its ability to
process data in parallel. It has already been siseckessfully in many practical

applications, such as the following ones.

« The application for which IBM developed the ZIS@iaily was the
automatic visual inspection of the VLSI they proedién their Essones
plant. The goal of this application was to inspgas, which are standard
or test dedicated Input-Output pads on the VL®lIspfobe damage
during wafer tests. Each via was analyzed andiied as having good
impact, bad impact or absence of impact. Thisiegigbn provided the
first demonstration of the efficiency of the ZISCa manufacturing

environment. It is described in de Trémiolles, fAtawf, Plougonven,
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Demarighn and Madani [15]. The efficiency of th&Z in real-time
vision or pattern recognition systems was thereaéeognized and many

other practical applications followed. .

Lindblad, Lindsey, Minerskjoeld, Skhniaidze, Szgkahd Eide [43] used
the ZISC to look for Higg's boson events amongstviery large number
of traces made by the elementary particles craatbijh energy particle
accelerators. Lindsey, Lindblad, Sekhniaidze, 8&l45], and
Minerskjold [45] also report tests of the ZISC ugethigh energy physics

tasks.

Madani, Mercier, Chebira and Duchesne [49] usedtB€ to devise a
new approach to control that implements a parediall time intelligent
adaptive controller. They presented experimaeisilts that validate

their concept.

Chebira, Madani and Mercier [10] devised a dateesirimethod, they
called DTS (Divide to Simplify), that builds dynacally a Multi-Neural
Network Architecture of ZISCs. The Multi-Neural Meirk architecture
they propose solves a complex problem by splittingto several easier
problems. Tests they reported show that, in teeltiag neural network,
learning is performed in few milliseconds and ayvgwod rate of

classification is obtained.

Lindsey, Lindblad and Eide [44] devised a ZISC bastar-tracker to

identify star constellations that are used to deitee with a very high
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precision the attitude of spacecrafts. The ZIS@ twnpares feature
vectors derived from histograms of distances tatipialstars around the
unknown star. This method is seen to be robust mepect to position
noise and requires a smaller database to trainahaventional methods,

especially for small fields of view.

David, Williams, de Tremiolles and Tannhof [12] geated a ZISC based
solution to the problem of noise reduction and iemnaghancement and
demonstrate its efficiency. The goal of their amilon was the
restoration of old movies (noise reduction, focosection, etc.), the
improvement of digital television images, and tleatment of images
which require adaptive processing (medical imagpeatial images, special

effects, etc.).

Madani, de Tremiolles, Williams and Tannhof [48gdghe ZISC to solve
the difficult problem of prediction and modelling@mplex non-linear
industrial systems. In particular, they deal with production yield

prediction in VLSI manufacturing.

Gliever and Slaughter [23] described an applicatiased on the ZISC
that discriminates between images of cotton crapveeeds, in order to
determine where herbicides should be sprayed laysmatic sprayer.

They reported better than 99% correct identifigatio

Yang and Paindavoine [72] developed a real timewisystem based on

the ZISC that localizes faces in video sequencdsvarifies their identity.
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They demonstrated the robustness of their systetadbiyg it on real

video sequences and comparing its performanceataflother systems.

Gaughran [22] presented a novel approach emplagim@ISC to
implement binary neighbourhood operations in imaigeessing such as
dilation, erosion, opening and closing. Despitegases in serial processor
speed, such operations have remained computagianadhsive, but
parallel devices as the ZISC have significantlyuicedl the computation

overheads.

Multispectral and imaging systems on a spacecaaftproduce more data
than can be analyzed by humans on Earth. Cai, idgel Gollapalli,
Venugopal and Bardak [6] considered the problemedficing this data, in
particular lidar profile data, by devising a feaimdexing system to
perform pattern recognition and data compressidooard. They
implemented a prototype of the onboard computen gisSC chips and
FPGA (Field Programmable Gate Array) so that iesalidvantage of
intrinsic parallel computing and reconfigurabilityhey reached a high
data compression rate of 99.17% with reasonabde eange. They
showed that their method significantly outperforntieel wavelet

compression technique.

Zhang, Ghobakhlou and Nikola Kasabov [74] describ@érson
identification system based on statistical methamusthe ZISC that

recognizes features extracted from faces. Theydstrated the
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efficiency of their system and showed that it ikeab evolve and improve

its performances.

Holton [30] reported that the ZISC, and its newersion, the Cognimem,
have been incorporated in intelligent cameraspbdbrm automatic
image classification. Practical applications @&fsth have been made to
inspect automotive cartridge filters at Norcon 8yst (Lombard, IL) and
to inspect the disk platters in hard disk drivelBa to determine whether

they are missing or ill inserted.

Budnyk, Chebira and Madani [5] used the ZISC irea& approach to
estimate task complexity that involves buildinge-erganizing neural

tree structure.

Kim and Slaughter [39] described a precise dispies# measurement
system that uses a non-contact image-based op¢icabr and a ZISC to
control the application of material in precisiomriaglture. Field tests,
with the system mounted on a tractor-drawn toolteemonstrated that a
much better precision was attained with this systeam with the usual

ground-wheel driven encoder.

Deck [13] and Deck and Labonté [14] used the ZIS@ parallel
computer tacalculate correlation coefficients between an ingaittern and
patternsstored in its neurons. They explored the possjaftusingthe
ZISC in a target tracking system by devising aliponisthat take

advantage of the ZISC's parallelism and testinghitve real video
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sequences. Their experiments indicated that th€ dtf&s improve
appreciably the computing time compared to a sd@i&ersion of the

algorithm.

« Finally, the ZISC can be seen in the context ahaéew of commercially
available neural network hardware in Dias, Antureasé Motab [16], in

Hammerstrom [27], in Madani [46] and in Smith [65].

Based on considerable experience accumulated vgpwkith the ZISC, Madani,
Detremiolles and Tannhof [47] provide precious |8§igns concerning using it
efficiently. They present an analysis of the nanameters that influence it
image processing power. They discuss more paatigtthe learning and the

working of the ZISC as a massively parallel device.

The consideration of the wide range of domainsoed by these applications
provided a definite motivation for us to test itsliay to perform the task of IR

aircraft and flare discrimination.

2. TARGET CHARACTERISTICS

The characteristics of the blobs identified by Ef#&P board of our target seeker

and tracker can be grouped in intensity and iniapf@atures.

2.1 Intensity features

Let Z :i=1to n, represent the intensities associatd the n pixels of the blob

considered. Since the image is gray-scale, eaishad integer in the range [0,
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255]. The intensity characteristics are as shownhable 2. The moments of the

intensity distribution measure the apparent textitbe target.

Intensity characteristics produced by the DSP nmeodul
Formula Designation
Zoex = I\:Aall_xn Z, The maximum intensity.
s_13 . .
Z= EZ Z The average intensity.
i=1
2 1N 2 . . e
u7 = = s (Zi -2Z) The variance of the intensity distribution.
i=1
3 _10n =3 . . e
Wy = = 3 (Zi -2Z) The third moment of the intensity distributio
i=1

2.2 Shape features

n.

In order to relieve the computation load, the imasgien binarized such that the

pixels inside and outside the blobs have respeuitemsity one and zero. We let

(x, y5) fori =1 to n be the coordinates of the pixelside a given blob, and

(x?,yP)fori= 1 to m be the coordinates of the pixelstiosboundary of this

same blob. The shape characteristics are themededis follows.

Shape characteristics produced by the DSP module

Formula

Designation

The coordinates of the centroid.

2 2
=1,)° +4l,

inertia.

The large principal moment of
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=Y (-0 (v, -9)

=i(xi _7)2

Imin = =

—%\/(IXX —1,)2+412

The small principal moment of

inertia.

The angled, such that if the blob is rotated

by — 6 around its centroid, its moment of

inertia kx will have the smallest possible

value.

The angle of orientatio@.

2
e = 1_[9] = 1_|m_in
a |

max

The eccentricity.

P = m, the number of pixels on the

The perimeter.

perimeter.
A = n, the number of pixels in the blob. The area.
P2
= The roundness.
4TA
D = Max D,

max

“i=1n

where D= /(x? %)% + (y? -)*

The maximum radial distance.

Doin = I\_/Iallxn D, The minimum radial distance.
= 1 o
D= EZ D, The average radial distance.
i=1
1 Zm: D -D)? The variance of the distan
mz distribution.

e

We have defined as the Euclidean distance from the centroid to the point

(x?,y?)on the boundary of the blob, as illustrated in Figure 5.
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Figure5: Radial distance, from the centroid to the perémet the blob.

Obviously, the set of these radial distances L to m} provides a complete
description of the shape of the blob. The DSP modweéuzes the characteristics

listed in the above table.

2.3. Invariant characteristics

The intensity of the light received from an object, at a rediatance, depends on
the transparency of the medium between the object and sbeveb. In order to
cancel this effect and obtain characteristics that areeptogghe observed objects
themselves, we shall consider preferably features thahtws of the light
intensities. Furthermore, they should be invaniamer translations and rotations

in a plane perpendicular to the line of sight.

We note that all the characteristics listed in Sectiorp@saess this invariance
except of course for the centroid coordinates and the ahgrientation of the
target. However, many of these characteristics depetiteatistance "d"
between the object and the observer, so that they d@mespond to intrinsic
properties of the objects. This is the case for the cleaistats that are calculated
with the intensities of the target pixels, because gities vary as 1/d Similarly,
the observed linear dimensions of an object, such as itd dastiances and its
perimeter, vary as 1/d. The dependence on d of the othertehestérs can easily

be computed from these two facts. Thus, for examplegliberved area will vary
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as 1/d, the observed moments of inertia as'léic. Based on these
considerations, we define the following variables thatirdependent of the line
of sight distance "d". Table 4 shows the invariant charistics that we have
defined. The numbers that appear in parenthesis represeadé thification

number we will use hereafter when referring to these chaisicier

Invariant characteristics of a blob
Formula Designation
(1) Znad Z The normalized maximum intensity.
(2) ZIA The normalized average intensity.
The normalized second (variance) and
3) @ , @ ﬂ third moments of the intensity
z distribution.
The normalized square root of the
(5) v/lmax 1A (6)M/A maximum and the minimum moments
of inertia.
(7) e The eccentricity.
8 R The roundness.
(9) Drad VA, (10) Dnin/ VA, The normalized maximum, minimum
(11) D/VA and average radial distances.
(12) 12 /A The normz.;lliz.ed Yariance of the radjal
distance distribution.

Table 4: The numbers in parenthesis is an identificatiomiper we use for that characteristic.

We note that the eccentricity e and the roundneseRIsed as such because these
variables are already invariant under translatadagsg the line of sight. The
angle of the principal axis of minimum inertia wast used because it is not a

characteristic of an object's shape.
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There exist, of course, many other combinationth@finitial variables that
correspond to distance and rotation independetirie®a The particular choice
we made here was motivated by the fact that digidlie variables by the average
intensity Z and the area A should not degrade too much thedigion. Indeed,
there should not be large measurements errarsand A themselves, because
their calculation involves computing a sum ovettadl pixels of the blob, and it is
expected that the normally distributed random mesmsant errors, made at each
pixel, cancel out if their number is large enou@n the other hand, normalizing
with variables that are obtained in a single measent, such a$1x0r Dmax

could result in an appreciable loss of precision.

3. INDIVIDUAL CHARACTERISTICS
DISCRIMINATING POWER

When designing artificial neural networks, a pheeaon, known as “the curse of
dimensionality”, makes it desirable to try and mmize the number of
components of their inputs. This comes from thue flaat neural networks
essentially realize a representation of the prdibaldiensity function of the data
used to train them. Thus, the number of sampksatte required to yield a
reasonable approximation of this function growsamgntially with the number of
dimensions of the input vectors (see Section 4Buafa, Hart and Stork [19]).
We therefore try and minimize the number of feaduhat we will use to
characterize the blobs while keeping those tha¢ lth® largest discriminating
power. In order to see which ones these are onstruct the histograms that
correspond to the number of blobs as a functiaghealues of an invariant

feature. The features with the largest discrimingapower will be those for
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which there are two separate regions of the feataitess in which the majority of

the aircraft and of the flare blobs lie.

Firstly, in order to make easier the comparisothe$e histograms, we normalize
the values of all the features so that they ligheninterval [0, 1], as follows. Let
Crax and Gyin be respectively the largest and the smallest vafl@eparticular
feature, over all the aircraft and flare imageenti a blob has the value C for this
feature, this value is replaced bys = (C - Giin)/(Crmax - Cmin), Which is then
dimensionless. We then divide the interval [0in120 equal subintervals and, for
each of these sub-interval, we count the numbairofaft and of flare blobs for
which the value of this feature lies in this suteimal. We then plot the staircase
curve where the ordinate is the number of objemtsted and the abscissa is the
interval [0, 1], divided in the 20 sub-intervals.Figure 6 shows the histograms
we obtained for the two classes of objects on dneesgraph; those for the
aircrafts are shown with solid lines and thosettierflares with dashed lines. The
data sets we used for the present study condiseifeatures of 740 blobs of each

aircrafts and flares; all of them were used in twtsing the histograms.
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Figure6: Histograms of the invariant features of the blthat correspond to aircrafts and flares.

The aircraft and flare histograms are respectivepyesented by solid and dashed lines. In these

histograms, the feature values are separated bin8Dand the ordinate is the number of blobs that

have the value of this feature within the boundaci&the corresponding bin.
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As these graphs make conspicuous, there are cttaires for which there are
definitely much more aircrafts than flares in at@erdomain of values of that
feature and vice versa. Such features should g®ssgood discriminating power.
This is the case for the third moment of the intesss the moments of inertia, the
eccentricity, the roundness and the minimum ratigthnce. Some others have
little discriminating power, such as the maximunensity, the average intensity,
the intensity variance because the majority ofdiheraft and flare blobs have
essentially similar values for this feature. linteresting to note that the
histograms for the eccentricity and the minimumatdistance seem to indicate
the presence of two distinct populations of flareghat they have two separate
discernable peaks. When one looks at which flaae® properties that lie within
these peaks, one indeed finds that there is onyfafflares that have the
appearance of fireballs and another family thatese symmetrical and often
have a long tail. The latter family is responsilolethe smaller peak that lies
within the large aircraft peak in the histograniis property entails that these
flares will be more difficult to discern from theé@afts. Based on these graphs,
we decided to use only the last nine charactesistie. those corresponding to the
sub-graphs (d) to (l), as components of the inpators, considering that the first

three have very low discriminating power.

4. THE REDUCED COULOMB ENERGY NEURAL
NETWORK

The Reduced Coulomb Energy neural network is acpdait type of Radial Basis
Functions (RBF) neural network that was devisetldgn Cooper et al. [56] for

pattern identification. Its name suggests theagalhat exists between its
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neurons and electric charges. The adjective "Re&sdt' is used to refer to the fact
that the influence fields of its neurons, or charg®ve a finite range and are
bounded at the origin, whereas the Coulomb fielsbélan electric charge varies
as the inverse of the distance to that chargeas.&/r. It should also be noted that
in the RCE neural network, the neurons /electrargés can exist in a space of
any dimension. Many different types of influenggdds can be considered and
will work as well as the truncated 1/r field. T$ienplest form, which is the one
that is used for the RCE implemented in the ZIS@ field that is constant within

a finite sphere about the generating charge, amdaéside of that sphere.

4.1 The structure of the RCE network

There are two layers and two kinds of neuronsénREE neural network. One
kind of neurons, the RCE neurons per se, are assdnmathe first layer, while
the second layer is made up of neurons that dogasl OR functions. The
structure of the RCE network and the way informmatlows through it are shown
in Figure 7. In this drawiny represents an input vector that is fed to eacheof
neuron in the first layer of the neural networkack of these neurons reacts by
producing an output y g(X) , which differs from neuron to neuron, accordiog
their internal state. These outputs are thentseme of the logical OR units,
which then produce their own output z. We will diédse these processes in

details below.
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Layer of RCE Layer of logical
neurons OR units

Figure 7: Structure of the RCE neural network.

4.2 The RCE neurons

Each of the RCE neurons is characterized by twarpaters: a reference vector,
which corresponds to the position in space of #saated “electric charge”, and
a non-negative scalar, which corresponds to thesaaf the sphere in which its
influence field is non-zero. These parameterchamged during the learning
process of the neural network, so that each neemda up having its own
reference vector and radius of influence. Thermfttion contained in the
network is stored in these parameters, just assitared in the synapses of

biological neurons.
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Suppose that the patterns to be classified aresepted by n-component vectors
that belong to a vector spaeé Then the reference vectors for the RCE neurons
will also be vectors i?". Here is how these neurons function. When tie i-
neuron receives an input vecy it computes the distance of this vector to its
reference vecto€;. If this distance is smaller than the radiu®Rits influence

field, then it outputs;y= 1, if it is not then it outputs ¥ 0. Mathematically, this
can be expressed as follows:

1 if d <R,
0 if d =R,

Yi=@X,C,R)=H(R -d )= {
where H is the Heaviside function andgithe distance betweéhandC;. Itis
said that a neuron is "excited" or "has fired" witsroutput is 1. Figure 8
illustrates this situation for 2-dimensional pattgectors. Because the pattern
vectorX lies in the sphere of influence of the first neyrib makes it fire; its

output will be y =1, while the other nearby neuron remains inagftgeoutput

will be y» = 0.

Figure8: lllustration of the spherical regions of inflenof two RCE neurons in 2-dimensional
space. These regions are respectively center€] andC,, and have their respective radius
equal to Rand R. A pattern vectoX that lies in the region of influence of the firuron will

make it fire, while the second neuron will remaiagtive.
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In the ZISC implementation of the RCE network, éare two different distance
functions that can be selected by the user: ther IManhattan distance, and the
Lsupdistance. We recall that4f andB are two vectors, with respective

components Aand B, withk=1ton,

their Ly distance is  BA, B) =, |A, - B,|
k=1

and their lsypdistance is A, B) = max ‘Ak - Bk‘.
k=1..,n

We note that when these distances are used inste¢he Euclidean distance, the
"spheres" of radius R, centeredCatdefined as the set of pointsuch that DX,

C) £ R are not geometrical spheres. Indeed, if Dasliidistance, this region is
actually diamond shaped, with diagonal equal tovZRile if D is the Lsyp
distance, it is a square, centered on C, withegleal to 2R. Nevertheless, in
illustrating the regions of influence of the ZIS€unons, we shall continue to
draw circles, as in Figure 8, these being meantaesentations of spheres

defined according to the adopted definition ofalise.

4.3 How the RCE Identifies Patterns

Suppose that there are K types of patterns thaR@ie neural network has to
classify. Then there will be K logical OR unitstnuits output layer, each one of
them corresponding to one of the K classes of thjed/hen a feature vector is
presented to this neural network, some of the R&Eans of the first layer will
fire while some others remain inactive. The patiaput will be correctly
identified if all the first layer neurons thateicites are connected to the OR unit

associated with the proper type of this patterhis DR unit will then output a
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one while all other OR units output a zero. Wallstxplain below how the RCE
neural network can be trained with examples ofgpa#t so that it ends up

behaving this way.

Mathematically speaking, the RCE neural networkks@s a function gce from
the pattern spade’ to the binary spac{ao, ]}K , that is the space of K-bit binary

numbers. Let us denote by,Ehe domain of the pattern space that is the union
of the spheres of influence of all the RCE neumfitype "m". Figure 9
illustrates these domains for the case in whichetlage 3 types of objects (K = 3)
and the pattern space is 2-dimensional (n = 2 flihction rce implemented

by a well trained RCE network is such that the imaumberZ = Frcg(X) will
contain only zeros except for a one at its m-thtjwos when the vectoX lies in
the domain R. If X lies outside of any of the domaing,Dn = 1..K, then all the
bits of Z will be zero, which is interpreted as meaning thatneural network
does not know the identity of that particular pattelf it happens that the data
with which the network is trained is ambiguousntBeme of the domains,)Pm

= 1..K, will overlap. Then, an input vect®rthat lies in the overlap of two or
more domains, will result in the output binary nilenB having more than one

"one", which will be interpreted as meaning tha tleural network is undecided.

38



Figure9: Three domains of the pattern sp@ehat are the union of the spherical influencedel
of RCE neurons of three different types.

4.3 Training the RCE neural network

The RCE neural network is trained "by exampldijolt means that its training
process consists in showing it samples of feataotovs for each category of
objects. The neural network has a mechanism tafynitelinternal parameters in
order to realize the relation that exists betwéenféature vectors and their

category. Here is how its training is done.

When the ZISC RCE neural network is initialized cdlthe neurons in its first
layer are "unallocated" which means that they aresiclered as not being part of
the neural network as such. Their reference vetdrthe radius of their
influence field are indeterminate. Some of themgrans will be "allocated”, that
is, added to the neural network, during the tragjmprocess, as the need arises.

They will then be assigned a reference vector araohge, and will be connected
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to one of the output OR units. Note that whentthining starts, it is not known
how many neurons will end up being in the final R@Ewvork. The only two
parameters that have to be set by the user atahiease: the maximum and the
minimum radius, Raxand R.n, which will be allowed for the spheres of

influence of the RCE neurons, the role of whicH Wil made clear hereafter.

Let the training data set be X{, Ki), i = 1..N}, where theX; 's are feature vectors
and the Ks are the types of objects they correspond taesé&ldata will be
presented to the network as input, one after anoithe random order. Whexj,
the first of feature vector, is submitted to theaaek, a first RCE neuron is
allocated: its reference vectOy is set equal &, and its range Rs set equal to
Rmax This neuron is then connected to the first OR that will, from now on,
correspond to category; lf objects, which we call Cat-1. The domaindd the
feature space, described above, now consists yrtlealspherical region of
influence of this first allocated neuron. Duriig tlearning process, more RCE
neurons and OR units will be allocated, and thelidoe more than one domain
defined in the pattern spaB8 by the spherical influence fields of allocated RCE
neurons. At this point, when another vectqrof the training set that belongs to
the category Kis presented to the network, one of the followfimgr cases can

occur.

Case1: The pointX in the vector spade” lies inside one of the influence field
of one or more RCE neurons that belongs to the sategory as K and none
that belongs to another category. Figure 10atilitiss this situation with a
pattern vectoX and three neighboring neurons in a 2-dimensia®tbLie space.

This pattern vector is shown to lie inside theugfice field of a single neuron that
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belongs to category Cat-i, which is the same as#begory oX. The OR unit of
the network for category Cat-i will then outputreepand all other OR units a
zero. This is the correct output the network stigarbduce so that its parameters

are left unchanged.

A A

10a 10b

Figure 10a: Geometrical situation in the feature sp&é¢hat corresponds to Case 1 in training the
RCE network. Figure 10b corresponds to Case 2.

Case2: The pointX, which belongs to category Cat-i, lies outsideitifleience
field of all the RCE neurons presently in the natyas illustrated in Figure 10b,
for a 2-dimensional feature space. Then, a newomewill be allocated, with its
reference vectoC set equal t&¢, and its range set equal to the minimum efxR
and the distances betweXrand the center of RCE neurons of other categories
than Cat-i. This new neuron is then connectetiéddR output unit for category
Cat-i. Figures 10a and 10b illustrate the two getoical situations in the space

P? that are covered by this case.
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Figure 11a: Geometrical situation in the vector sp&ehat corresponds to Case 2, when the
radius of the sphere of influence of the new newemtered oiX has its radius set to,R.
Figure 11b: Also in Case 2, but when that radius will betedhe distance to the center of the
closest neuron of a category other than tha.of

Case 3: The pointX, which belongs to category Cat-i, lies in a regidrere
there is an overlap of the influence fields of R@&tirons that belong to many
categories, one of which is the correct one. $hisation is illustrated in Figure
12a for a 2-dimensional feature space. Then dmmileg algorithm reduces the
radius of the sphere of influence of all the RCHroes that are associated with
the wrong category, so that tRelies on the limit of that sphere. The resulting

geometrical situation in the vector sp&s illustrated in Figure 12b.
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12a 12b

Figure12a: The geometrical situation where the trainingteeX lies in a region in which the
influence fields of RCE neurons with different cgiges overlap.Figure 12b: The final situation

produced by the training algorithm.

Case4: The pointX, which belongs to category Cat-i, lies only in thitluence
fields of RCE neurons of the wrong categories.ufgdlL3a illustrates this
situation in a 2-dimensional pattern space. Thamw neuron will be allocated,
with its reference vectd set equal tX, and its range set equal to the minimum
of Rnaxand the distances betweX¥rand the center of RCE neurons of other
categories than Cat-i. This new neuron is themeoted to the OR output unit
for category Cat-i. Furthermore, the radius otte RCE neurons that contain

in their sphere of influence is reduced uKtidnd lies on the limit of these
spheres. Figure 13b illustrates the resultingrgedcal situation in a 2-

dimensional feature space.
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13a 13b

Figure13a: The geometrical situation in which the featuegterX lies only in the influence
fields of RCE neurons with the wrong categorisgur e 13b: The final configuration produced

by the training algorithm.

During the training process, some RCE neurons eamhbllocated, that is
removed from the neural network. This will hapmémen the radius of their

sphere of influence would have to be reduced b&gw

In general, the network will learn properly only evhthe training set of sample
data is presented many times with the trainingrétlyo kept activated. How

does one know then that enough training has beeedd his is actually a
guestion that is also pertinent to all other typeseural networks. One answer
consists in using another set of pattern vectasitlnas never seen as "validation
set". The training mechanism for the neural nekwethen turned off, and the
vectors of this set are presented to it. Stasisire gathered on its performance on
this set, and if this is judged to be satisfacttimgn the training is considered
complete and the neural network ready to be usepdibern identification.

Another way of determining that learning is comglist when the parameters of
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the neural network do not change anymore wherr#ieinig set of pattern vectors

is presented to it. This is the approach we hakert here.

4.4 The ZISC set-up

As mentioned above, our study was done with theCZiStalled on the EZB 624
PCIl board. The implementation of the RCE neurdhagk implemented on that
board can have up to 624 neurons, and requires wagtors to have at most 64
components, each of which has to be an 8-bit intefjlee components of our
feature vectors had therefore to be normalizedhaothey are integers in the
range 0 to 255. In this ZISC, the radius of tifeuence field of RCE neurons is
stored in a 14-bit register, so that its valuesimtbe 0 to 16383 interval. Because
the ZISC has been expressly designed for imagegsisand pattern recognition,
it comes with a library of functions that coverak need for our application.

The ZISC on the PCI board is accessed through caasnia Visual Basic or

Visual C and can have up to 624 neurons.

The ZISC requires the pattern vectors to be predesgquentially, one
component at the time. The chip then distributeheomponent of its input
vectorX to all neurons in parallel. Each time a compomesent to the ZISC, all
neurons simultaneously calculate the differencevéen it and the corresponding
component of its reference vector, i = 1 to 624. All neurons then also
simultaneously update the value of the distance, &), whether this is
calculated with the Lor the Lgypnorm. Once the last componentofs received
and processed, each neuron determines whethet tr fioe", i.e. to outputa 1

or a 0, by comparing the distance it calculatedh i radius R When used in
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pattern recognition mode, the ZISC then writesdiséances and the category of
each neuron that fired in some output registetse HC software that
communicates with the ZISC board is then usedttere this information and
announce the category of the pattern. When uskséining mode, the user only
has to present to the ZISC a sequence of pattatingsheir associated category;
the whole RCE learning mechanism is implementeekctly on the hardware chip

and requires no further user intervention.

Details of the operation of the ZISC and of theadatnipulations carried out
inside the chip, with their timing, can be foundAhC. Deck's MSc Thesis [13].
The ZISC we used operates at 20 MHz. The docurientdnat comes with [61]
claims that it takes 3.@s to receive a 64 component input vector and catieuts
distance to all RCE neuron reference vectors, ditiadal 0.5us to place the
distances and categories in the output list, apd  read a distance-category
pair from the ZISC registers. This gives a proicgssime of the order of 5.[ds
per pattern vector. On the other hand, the sarnerdentation claims that the
ZISC can evaluate more than 250,000 pattern vep@rsecond. This would
correspond to a time of 4 us required to evalugtatern vector. This would be
the order of magnitude of the processing time texpected when the ZISC chip
is mounted in a dedicated pattern identifier, asld/®e the case in our final
aircraft-flare discrimination system. We note théien the ZISC is accessed on a
PCl card in a PC, as is the case in our experinttegte is an additional

communication overhead. We evaluated this overireadr experiments.

46



5. RESULTS

5.1 Identification Efficiency Tests

Our ZISC neural network was trained and tested thigh1480 feature vectors of
an equal number of single aircraft and single fladobs that we had at our
disposal. Its ability to discriminate between gifts and flares was tested with
the method of M-fold cross-validation. This istarglard method for such a task
that is discussed in most textbooks on patterrsifieation, as for example in
Section 9.6.2 of Duda, Hart and Stork [19], in t0.8.1 of Bishop [ 4] and in
Salzberg [60] and Ripley [57]. According to thiethod, the whole data set S of
size N is randomly divided into M disjoint setsWith i =1,..,M, of equal size
equal to N/M. The set S is initially randomly prdreo that it becomes an integer
multiple of M. Then M similar experiments are éadrout as follows. In the first
one, the ZISC neural network, which starts withtalheurons inactive, is trained
with the large set (S -1 When the training is complete, the neural nekwe
tested on the smaller set, hich it has never seen in its training phasd, itm
errors are noted down. The second experimentvisliexactly the same protocol;
the ZISC is re-initialized so that its neural netkbas no active neurons, and this
time the set Sis used in the role played by fa the first experiment. This same
experiment is thereafter repeated (M-2) times, wihh of the other; $ the role

of S;. For fairly large data sets, as the one we have, fit is generally considered
that M should be taken between 5 and 10 (See onple Bishop [4], Duda,

Hart and Stork [19], Salzberg [60] and Ripley [67We shall use 10 hereafter so

that each subset Bas 148 feature vectors.
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An advantage of the M-fold cross-validation metlthat it allows one to

compute a confidence interval for the error rdteleed, if the probability that the
neural network makes an error when asked to ideatifobject is represented by
"p", the probability that it makes k errors whekex$ to identify N objects follows

the binomial distribution (see Duda, Hart and S{a®):

N

P(K) =[k

} p (- p*

and the maximume-likelihood estimates for p is%, where K is the number of

errors observed in our tests. According to there¢limit theorem, for N as
large as we have here, confidence intervals foatheal error rate can be
computed as if the binomial distribution were amal distribution. (See Section
9.1 of Walpole, Myers and Myers [71]). Thus,o)B4 of the time, the error rate

will be found in the confidence interval

{ﬁ—zm ’p(ll\T p)’ P+Z,,, Ipa’; IO)}Where Zj2 is the positive number such

that the area under the standard normal distribtutiadhe interval[— Zy2rZy ,2J

is (1-0). As can be seen in this formula when the nurbdata N is decreased,
the confidence interval widens, that is the valoeputed for the error rate is less

precise. The reciprocal behavior is obviously tuen N is increased.

In our tests of the ZISC neural network, we usedlthnorm to calculate the
distances (the Manhattan distance then) betwe¢erpst with the parameters:
Rmax= 5000 and Rn= 10, which were set after running some prelanjrtests
with the network. On the average, our ZISC nenetlvork stabilized after only 3

training epochs, that is after all the trainingtees were presented to it three
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times. When the trained neural network was testethe data used to train it, it
never made any mistake (which is not necessariigyd the case). Table 5
shows the results we have obtained in the 10 @iffeexperiments described

above, when the trained neural network was testati@validation data sets.

5 Number of errors B
= = Aircraft Blobs Flare Blobs S
- = F ? AC&F AC ? AC&F -
1 1 3 3 3 2 3 15
2 1 0 3 4 2 4 14
8 1 1 7 4 4 6 23
4 1 3 5 0 1 4 14
5 2 0 8 0 2 3 15
6 0 5 5 2 1 8 21
7 4 0 4 1 3 4 16
8 3 0 2 4 3 3 15
9 0 1 4 1 4 2 12
10 1 1 2 1 1 1 7

Table5: Identification errors made by the ZISC neuralvaek on the validation data set in the

10 experiments required for its 10-fold cross-\atiidn. The left-most column shows the number
of the experiment. The following three columnsvghbe errors made by the neural network in
identifying aircraft blobs: an error is of typefraiblob was falsely identified as a flare, of typé

if the network did not recognize the blob as belpggo any one of the two categories of objects it
knows, and it is of type AC&F if both an aircraficha flare neuron were activated in the network.
The following three columns represent the corredpanresults for the flare blobs. The last
column to the right shows the total number of ermoade in the corresponding experiment.

The total number of errors made by the networkeitentification of N = 1480
blobs is k = 152. The maximum likelihood estimiatethe probability "p" that

the neural network makes a classification errtohésefored = 114_582( =0.103, that

is essentially 10.3% so that its expected sucetess 89.7%. As mentioned
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above, confidence intervals for the actual errte can be computed as if the
binomial distribution were a normal distributiomhus, we can say, with 95%

confidence, that the neural network will make bemw& - 23 and K + 2 errors,
whereo =,/Np(@-p) , when tested on 1480 sample blobs. This meand tha

expected to make between 128 and 175 errors onidlé80fications; in other
words, its success rate will be between 88.2% ar@P®. A similar calculation
shows that 99.7% of the time, its success ratebsilbbetween 87.4% and 92.1%.
Finally, we present the results of our tests inftlien of a confusion matrix (see

Kohavi and Provost [41]).

Confusion Matrix

Actual identity
Counts Percentages
Aircrafts | Flares| | Aircrafts | Flares
> | Aircrafts| 669 20 90.4 2.7
.*QE_,‘ Flares 14 659 1.9 89.1
5 ? 14 23 1.9 3.1
% AC&F 43 38 5.8 51

Table 6: Two versions of the confusion matrix for our $eate shown in the white areas of this
table. The one on the left-hand side shows thebeuof patterns that the ZISC classified as
aircraft, flare, unknown, and ambiguous. The améhe right-hand side shows the corresponding
percentages of patterns put in each class. Tétecitumn in each confusion matrix corresponds

to feature vectors for aircrafts and the secondmalto feature vectors for flares.

In order to appreciate the excellent quality ofstheesults, it is worthwhile
looking at some of the images on which errors aaglerby the neural network.
Figure 14 shows some representatives of these snadleof its other mistakes

being made on very similar images as these.
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(a) Aircraft mistaken for a flare. (b) Aircraft mistaken for a flare.

+

(d) Flare to the right mistaken for an aircraftirofaft

-

(c) Aircraft mistaken for a flare. at bottom mistaken for a flare.

:

(e) Flare under aircraft mistaken for aircraft ex¢ta (f) Flare mistaken for aircraft exhaust.

Top aircraft recognized.

(g) Flare at bottom of picture mistaken for an raiftc (h) Flare mistaken for an aircraft.
Top aircraft recognized.

Figure 14: Images of aircrafts and flares on which the R€E&ral network made mistakes.

As these pictures show, the discrimination task tiia neural network was asked

to perform was far from trivial . Indeed, even famexperts would be uncertain
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and make mistakes with many of these images. elfiitst picture, the aircraft is
seen from behind and does look very much like seflares. The second picture
is taken from a short video sequence in which ilegadt's appearance is very
different from that in the majority of the othercfires, so that its characteristics
had not really been learned by the neural netwdiks situation could be easily
remedied by exposing the neural network to morewisequences of this type of
aircraft image. Inthe 3rd picture, the aircraffar away and its shape is very
imprecise. Some of the flares for which the neoetvork makes mistakes have
shapes that are close to those of aircrafts seemlfehind, as shown in pictures
(d) and (h). Some others, such as pictures (ejfarate very similar to those of
aircraft exhausts, which actually happens to bthatlis seen in some of our
training infrared pictures of aircrafts. We ndtattsome flares happen to deploy
with characteristics that are so close to thosarofafts that they are bound to be
misidentified. Similarly, an aircraft that is faway and seen from behind will
almost certainly be mistaken for a flare. As mmmeid in our introduction,
considering time dependent characteristics cowdd ttelp improve the accuracy

of discrimination in such cases.

5.2 Is it Fast Enough ?

As mentioned at the end of Section 4, the ZISC dwmnation claims that it can
classify a pattern vector in a little less thans4 [This time does not include the
time required for communications with the ZISC chgelf. With our ZISC on
the EZB 624 PCI board, this is the time requiredhsyPC to communicate with
the PCI board and the time required by that baaattess the ZISC chip. In

order to obtain an estimate of this communicatioref we measured the total
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time it takes to do a simple read operation fromRIC to the ZISC, which
executes in one clock cycle. We then subtracteditine of one clock cycle from
the measured time to obtain the timeg=T1.5 us required by the communication
process. We used the Intel machine language cothindisc” (read time stamp
counter) to determine elapsed CPU clock cycleher2GHz PC that we were
using, giving our time measurements a resolutiod.®ins. For each vector that
is processed, the ZISC is accessed at least twmastlof the time 3 times. The
first time is when it is sent the feature vectomgmit. The second time is when
its status register is read to see if some neurawms fired or if all firing neurons
had the same category. If they did, then thatgoatehas to be read in the ZISC.
Thus, the communication time overhead is at le@stE23 us and most of the time
it will be 3To = 4.5 ps. In the experiment we described aboeeneasured the
time required to identify each pattern vector @& validation set, once the neural
network had been trained. We found an averagediBes pus. Since the
communication time overhead is at least 3 ps,itie tequired by the ZISC to
identify a pattern is at most 5.6 ps. The docuatani for the Cognimem chip
[11], which has replaced the ZISC, indicates th&tkes 10 clock cycles to
broadcast the 9 components of our input vectoll th@neurons of the network,
and 36 other clock cycles for the chip to retumdhtegory of the best match.
The single Cognimem chip, with 1024 neurons, fssldck at a frequency of 27
MHz. Thus, the 46 clock cycles that are requiaddentifying a feature vector
with the Cognimem chip correspond to 1.7 ps. Tagrinem chip is therefore

faster than the ZISC board that we used.

The maximum speed of fighter aircrafts such asi®E, F-16 and F-22 is about

Mach 2 to 2.5, that is 2,450 km/h to 3063km/h, aditmy to Air Force Link [1].
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According to the Russian Aircraft Corporation [584t of the MIG-31E is Mach
2.83 that is 3467 km/h. Upon taking Mach 3 as aimam speed for modern
aircraft fighters, we can calculate that such acraift will have traveled at most
5.7 mm in the time the ZISC takes to identify &sget. With the processing time
reported by Cognimem, the distance it traveled dioully be 3.2 mm. Amongst
the fastest IR guided missiles are the VT-1 versibine Crotale, developed by
Thomson CSF Matra (now Thales) [70] , and the Repi{64] Standard Missile
that are reported to fly at Mach 3.5+. Supposhag such a missile did fly at
Mach 4, it would then only cover 7.6 mm during tinee required to identify the
target. There is therefore no doubt that the msiog speed of the ZISC is amply

sufficient for its incorporation in a real time gat seeker and tracker.

6. CONCLUSION

We showed how to construct translation and rotatiwariant characteristics
from the features of infrared images of aircrafi 8iares produced by a digital
signal processing board. We then determined tlis@riminating power by
constructing their histograms and comparing thdseioed for the aircrafts and
those for the flares. Those features for whicls¢h@stograms showed
considerable overlap were then dismissed and mamcteristics were left to use

as input for our neural network.

In Section 5, we reported and discussed the reselisbtained with real infrared
video sequences of aircrafts and flares. Theseethdhat the ZISC is very much
able to discriminate between these two types adaibj with about 90% correct

identification rate. In Figure 14, we presenteatesentative images of those on
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which the RCE neural network made its mistakese €an see that even a human
expert would have difficulties recognizing the atgein most of them. It would

be worthwhile training the ZISC neural network oarmdata that also
corresponded to a wider variety of situations. stould help determine the
optimal performances this device can achieve. b\ee the efficiency of the
aircraft- flare discrimination process could be mowed by also taking into
account the dynamic features of the objects detec®eich features, computed
from a few consecutive video frames, would be adtsedomponents to the vector

of static characteristics used in the present study

In our tests, we also measured the time requireitido ISC to identify a feature
vector and found it to be at most 5.6 us . Thigetis short enough that the fastest
aircrafts and missiles will have traveled only & f&illimeters during that

process. It is therefore clear that, from thenpof view of processing speed,
there is no problem in incorporating the ZISC ireal time missile target seeker
and tracker.

That fact and the ZISC efficiency in aircraft-flatiscrimination allow us to
conclude that the ZISC hardware neural networkdeed a candidate of choice

for the image identification sub-system of an irdchseeker and tracker.
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FIGURE LEGENDS

Figure 1: On the left-hand-side: reticule mask and on itjet+hand-side: rosette

scan used initially in infrared seekers.

Figure 2: Basic configuration of the infrared seeker ardKer.

Figure 3: Pre-processing of the infrared image and its ssgation.
Sub-figuresin Figure 3

(a) Image produced by the IR camera

(b) Image processed with a double-gated filter

(c) Segmentation in three blobs
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Figure 4a: EZB 624 PCI board. The eight ZISC78 chips thakenthe 624
neurons neural network are visible to the righthefboard. Figure4b: The

Cognimem chip with 1024 neurons.

Figure5: Radial distance, from the centroid to the per@anet the blob.

Figure6: Histograms of the invariant features of the Bltimt correspond to
aircrafts and flares. The aircraft and flare histmgs are respectively represented
by solid and dashed lines. In these histogranesfetiture values are separated in
20 bins, and the ordinate is the number of blobshhave the value of this feature

within the boundaries of the corresponding bin.

Figure7: Structure of the RCE neural network.

Figure8: lllustration of the spherical regions of inflleenof two RCE neurons in
2-dimensional space. These regions are respectigatered oiC; andC,, and
have their respective radius equal toaRd R. A pattern vectoK that lies in the
region of influence of the first neuron will makdire, while the second neuron

will remain inactive.

Figure9: Three domains of the pattern sp@ehat are the union of the

spherical influence fields of RCE neurons of thiléferent types.

Figure 10a: Geometrical situation in the feature sp&¢hat corresponds to Case

1 in training the RCE network=igure 10b corresponds to Case 2.
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Figure 11a;: Geometrical situation in the vector sp&ghat corresponds to Case
2, when the radius of the sphere of influence efrtaw neuron centered &nhas

its radius set to R« Figure 11b: Also in Case 2, but when that radius will be set
to the distance to the center of the closest neofarcategory other than that of

X.

Figure12a: The geometrical situation where the trainingoeX lies in a region
in which the influence fields of RCE neurons wiifietent categories overlap.

Figure 12b: The final situation produced by the training altjon.

Figure 13a: The geometrical situation in which the featueeterX lies only in
the influence fields of RCE neurons with the wr@ategories.Figure 13b: The

final configuration produced by the training alglom.

Figure 14: Images of aircrafts and flares on which the R@E&ral network made
mistakes.

Sub-figuresin Figure 14

(a) Aircraft mistaken for a flare.

(b) Aircraft mistaken for a flare.

(c) Aircraft mistaken for a flare.

(d) Flare to the right mistaken for an aircraftirchaft at bottom mistaken for a
flare.

(e) Flare under aircraft mistaken for aircraft ex¢ta Top aircraft recognized.
() Flare mistaken for aircraft exhaust.

(g) Flare at bottom of picture mistaken for anrafic Top aircraft recognized.

(h) Flare mistaken for an aircraft
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TABLE LEGENDS

Tablel: The first column is the generation number, #ngosd column is the
method of detection of the signal, the third colusthe type of IR detector used,
and the fourth column gives examples of missilésguthe corresponding

technology. The last column gives a referencéabtechnology.

Table4: The numbers in parenthesis is an identificatiomber we use for that

characteristic.

Table5: Identification errors made by the ZISC neurdinwek in the 10
experiments required for its 10-fold cross-validati The left-most column
shows the number of the experiment. The followhrge columns show the
errors made by the neural network in identifyingaft blobs: an error is of type
F if a blob was falsely identified as a flare, y¢ "?" if the network did not
recognize the blob as belonging to the two categaf objects it knows, and it is
of type AC&F if both an aircraft and a flare neunsare activated in the network.
The following three columns represent the corredpwnresults for the flare
blobs. The last column to the right shows thel taianber of errors made in the

corresponding experiment.

Table6: Two versions of the confusion matrix for our geate shown in the
white areas of this table. The one on the leftdhside shows the number of
patterns that the ZISC classified as aircraftgflamknown, and ambiguous. The

one on the right-hand side shows the correspomingentages of patterns put in
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each class. The first column in each confusiorrimeadrresponds to feature

vectors for aircrafts and the second column taufeatectors for flares.
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